Система питания карбюраторного двигателя: характеристика, устройство

Как работает простейший карбюратор

В функционировании системы питания карбюратора можно выделить следующие этапы:

  1. Горючее из бака откачивается насосом и течёт по трубопроводу, попадая в карбюратор. При этом уровень топлива в бензобаке контролируется указателем, в электрической цепи которого присутствует датчик.
  2. Бензин очищается с помощью фильтра-отстойника и фильтра тонкой очистки.
  3. Воздух попадает в карбюратор после воздушного фильтра.
  4. Изготовленная топливно-воздушная смесь из карбюратора поступает в цилиндры через впускной трубопровод. В нем она нагревается.
  5. Отработанные газы выводятся из двигателя системой выпуска. В неё входит трубопровод, труба и глушитель, снижающий уровень шума при выпуске газов.

Системы питания и выпуска отработавших газов двигателя автомобиля:

1 — канал подвода воздуха к воздушному фильтру; 2 — воздушный фильтр; 3 — карбюратор; 4 — рукоятка ручного управления воздушной заслонкой; 5 — рукоятка ручного управления дроссельны­ми заслонками; 6 — педаль управления дроссельными заслонками; 7 — топливо проводы; 8 — фильтр-отстойник; 9 — глушитель; 10 — приемные трубы; 11 — выпускной трубопровод; 12 — фильтр тонкой очистки топлива; 13 — топливный насос; 14 — указатель уровня топлива; 15 — датчик указателя уровня топлива; 16 — топливный бак; 17— крышка горловины топливного бака; 18 — кран; 19 — выпускная труба глушителя.

Читайте также: Для чего нужен катализатор в автомобиле: признаки неисправности и способы промывки устройства

Топливо. В качестве топлива в карбюраторных двигателях обычно ис­пользуют бензин, который получают в результате переработки нефти.

Требования, предъявляемые к бензинам:

• быстрое образование топливовоздушной смеси;

• скорость сгорания не более 40 м/с;

• минимальное коррозирующее воздействие на детали двигателя;

• минимальное отложение смолистых веществ в элементах системы питания;

• минимальное вредное воздействие на организм человека и окружаю­щую среду;

• способность длительное время сохранять свои свойства.

Автомобильные бензины в зависимости от количества легко испаряющихся фракций подразделяют на летние и зимние.

Для автомобильных карбюраторных двигателей выпускают бензины А-76, АИ-92, АИ-98 и др. Буква «А» обозначает, что бензин автомобильный, цифра — наименьшее октановое число, характеризующее детонационную стойкость бензина. Наибольшей детонационной стойкостью обладает изооктан, (его стой­кость принимают за 100), наименьшей — н-гептан (его стойкость равна 0). Октановое число, характеризующее детонационную стойкость бензи­на, — процентное содержание изооктана в такой смеси с н-гептаном, ко­торая по детонационной стойкости равноценна испытуемому топливу. Например, исследуемое топливо детонирует так же, как смесь 76 % изо­октана и 24 % н-гептана. Октановое число данного топлива равно 76. Октановое число определяется двумя методами: моторным и исследова­тельским. При определении октанового числа вторым методом в марки­ровке бензина добавляется буква «И». Октановое число определяет до­пустимую степень сжатия.

Топливный бак. На автомобиле устанавливают один или несколько топливных баков. Объем топливного бака должен обеспечивать 400—600 км пробега автомобиля без заправки. Топливный бак состоит из двух сварных половинок, выполненных штамповкой из освинцованной стали. Внутри бака имеются перегородки, придающие жесткость конструкции и препятствующие образованию волн в топливе. В верхней части бака приварена наливная горловина, которая закрывается пробкой. Иногда для удобства заправки бака топливом используют выдвижную горловину с сетчатым фильтром. На верхней стенке бака крепится датчик указателя уровня топлива и топливо заборная трубка с сетчатым фильтром. В днище бака имеется резьбовое отверстие для слива отстоя и удаления механических примесей, которое закрыто пробкой. Наливную горловину бака закрывают плотно пробкой, в корпусе которой имеется два клапана — паровой и воздушный. Паровой клапан при повышении давления в баке открывается и выводит пар в окружающую среду. Воздушный клапан открывается, когда идет расход топлива и создается разрежение.

Инжекторные топливные системы

Инжекторные топливные системы в настоящее время применяются гораздо чаще карбюраторных, особенно на бензиновых двигателях легковых автомобилей. Впрыск бензина во впускной коллектор инжекторного двигателя осуществляется с помощью специальных электромагнитных форсунок (инжекторов), установленных в головку блока цилиндров и управляемых по сигналу от электронного блока. При этом исключается необходимость в карбюраторе, так как горючая смесь образуется непосредственно во впускном коллекторе.

Различают одно- и многоточечные системы впрыска. В первом случае для подачи топлива используется только одна форсунка (с ее помощью готовится рабочая смесь для всех цилиндров двигателя). Во втором случае число форсунок соответствует числу цилиндров двигателя. Форсунки устанавливают в непосредственной близости от впускных клапанов. Топливо впрыскивают в мелко распыленной виде на наружные поверхности головок клапанов. Атмосферный воздух, увлекаемый в цилиндры вследствие разрежения в них во время впуска, смывает частицы топлива с головок клапанов и способствует их испарению. Таким образом, непосредственно у каждого цилиндра готовится топливовоздушная смесь.

В двигателе с многоточечным впрыском при подаче электропитания к электрическому топливному насосу 7 через замок 6 зажигания бензин из топливного бака 8 через фильтр 5 подается в топливную рампу 1 (рампу инжекторов), общую для всех электромагнитных форсунок. Давление в этой рампе регулируется с помощью регулятора 3, который в зависимости от разрежения во впускном патрубке 4 двигателя направляет часть топлива из рампы обратно в бак. Понятно, что все форсунки находятся под одним и тем же давлением, равным давлению топлива в рампе.

Когда требуется подать (впрыснуть) топливо, в обмотку электромагнита форсунки 2 от электронного блока системы впрыска в течение строго определенного промежутка времени подается электрический ток. Сердечник электромагнита, связанный с иглой форсунки, при этом втягивается, открывая путь топливу во впускной коллектор. Продолжительность подачи электрического тока, т. е. продолжительность впрыска топлива, регулируется электронным блоком. Программа электронного блока на каждом режиме работы двигателя обеспечивает оптимальную подачу топлива в цилиндры.

Рис. Схема системы питания топливом бензинового двигателя с многоточечным впрыском:
1 — топливная рампа; 2 — форсунки; 3 — регулятор давления; 4 — впускной патрубок двигателя; 5 — фильтр; 6 — замок зажигания; 7 — топливный насос; 8 — топливный бак

Для того чтобы идентифицировать режим работы двигателя и в соответствии с ним рассчитать продолжительность впрыска, в электронный блок подаются сигналы от различных датчиков. Они измеряют и преобразуют в электрические импульсы значения следующих параметров работы двигателя:

  • угол поворота дроссельной заслонки
  • степень разрежения во впускном коллекторе
  • частота вращения коленчатого вала
  • температура всасываемого воздуха и охлаждающей жидкости
  • концентрация кислорода в отработавших газах
  • атмосферное давление
  • напряжение аккумуляторной батареи
  • и др.

Двигатели с впрыском бензина во впускной коллектор имеют ряд неоспоримых преимуществ перед карбюраторными двигателями:

  • топливо распределяется по цилиндрам более равномерно, что повышает экономичность двигателя и уменьшает его вибрацию, вследствие отсутствия карбюратора снижается сопротивление впускной системы и улучшается наполнение цилиндров
  • появляется возможность несколько повысить степень сжатия рабочей смеси, так как ее состав в цилиндрах более однородный
  • достигается оптимальная коррекция состава смеси при переходе с одного режима на другой
  • обеспечивается лучшая приемистость двигателя
  • в отработавших газах содержится меньше вредных веществ

Вместе с тем системы питания с впрыском бензина во впускной коллектор имеют ряд недостатков. Они сложны и поэтому относительно дорогостоящи. Обслуживание таких систем требует специальных диагностических приборов и приспособлений.

Наиболее перспективной системой питания топливом бензиновых двигателей в настоящее время считается довольно сложная система с непосредственным впрыском бензина в камеру сгорания, позволяющая двигателю длительное время работать на сильно обедненной смеси, что повышает его экономичность и экологические показатели. В то же время из-за существования ряда проблем системы непосредственного впрыска пока не получили широкого распространения. 

Функции системы питания дизельного ДВС

Назначение системы питания дизельного двигателя – подать горючее к форсункам и далее в цилиндры под высоким давлением. За это отвечает комплекс устройств, обеспечивающих непрерывность, точность и согласованность процесса. Особенности систем питания дизелей:

  • солярка подается на впрыск точно отмеренными дозами, в зависимости от текущей нагрузки и режима работы;
  • интенсивность впрыска также регулируется в зависимости от нагрузки на конкретный момент времени;
  • обеспечивается эффективное распыление и распределение дизтоплива по камере сгорания;
  • перед тем, как попасть в насос, топливную магистраль и двигатель, горючее фильтруется, чтобы не загрязнить форсунки и другие критически важные элементы.

Особенности

Повсеместно дизельные двигатели применяются в инженерных машинах, грузовых автомобилях и маршрутных транспортных средствах. Реже такой тип двигателя встречается у легковых автомобилей, однако, в связи с общим ростом их популярности, дизельные двигатели стали все чаще устанавливаться и на них. 

Конструкция камеры сгорания у дизельного двигателя подразделяется на раздельную камеру сгорания и камеру с непосредственным впрыском. В первой ситуации камера сгорания соединена с цилиндром при помощи специального канала. Во время сжатия поступающий в камеру воздух вихревого типа закручивается. Это позволяет улучшить самовоспламенение, которое происходит в основной камере. Такие дизельные двигатели чаще всего встречаются на легковых автомобилях, так как уровень их шума значительно ниже по сравнению с другими двигателями и диапазон оборотов больше.

Во втором случае камера сгорания находится непосредственно в поршне, а топливо попадает в надпоршневое пространство. Низкооборотные моторы с большими объемами чаще всего имеют такую конструкцию. Такие моторы первоначально сильно шумели и вибрировали, но расходовали малое количество топлива. Постепенно появились топливные насосы высокого давления дизельного двигателя с оптимизацией процесса сгорания. Была достигнута стабильная работа двигателя при диапазоне до 4500 оборотов в минуту. Шум и вибрации также были значительно снижены.

Дизель или бензин?

Плюсы и минусы разных типов двигателей часто волнуют автовладельцев. Несмотря на то, что уровень шума и вибраций у дизельных моторов значительно снизился в результате их модернизации, многих автовладельцев беспокоит вопрос: как быстрее завести дизель в морозную погоду? Действительно, дизельный мотор и салон автомобиля прогреваются медленнее вследствие более низких рабочих температур двигателя. Вопрос решается установкой на моторы дополнительных отопителей. Такая опция получила широкое распространение на современных двигателях.

Казалось бы, на этом все, но нет. Многие автолюбители приобретают легковые автомобили с дизельными двигателями из-за относительной дешевизны дизельного топлива. Желая сэкономить на топливе, они не учитывают, что дизельные двигатели гораздо более требовательны к качеству топлива, нежели бензиновые. Бензиновые двигатели скорее требовательны к нужному октановому числу.

Дизельные двигатели напрасно считаются неприхотливыми, так как их требовательность к качеству топлива и расходных материалов довольно высока. Не секрет, что отечественное дизельное топливо по качеству сильно отстает от импортного европейского. Использование старой доброй солярки может неблагоприятно отразиться на работоспособности двигателя. Однако, ведущие российские нефтяные компании стараются решать эту проблему.

Дизтопливо «Евро 4» полностью соответствует стандартам и позволяет двигателю сохранять работоспособность в течение долгого времени. Некоторые также пытаются употреблять автохимию (антигелевые средства), которые позволяют увеличить качество топливо, но использовать их рекомендуется только если уже истек гарантийный срок.

Таким образом, приобретая автомобили с дизельными двигателями, официально не поставляющиеся в Россию, вы рискуете быстро привести в негодность двигатель, рассчитанный на европейское топливо.

Техническое обслуживание дизельного двигателя почти всегда дороже бензинового. Это объясняется более высокой стоимостью запчастей (воздушных, топливных фильтров и т.д.). Замена масла осуществляется чаще, чем у бензинового конкурента (в среднем каждые 7,5 км).

Неплохим преимуществом дизеля, относительно бензинового двигателя, является более экономный расход топлива при большом пробеге автомобиля. Более старый бензиновый двигатель потребляет бензин уже не так экономно, как новенький. В дизельном двигателе такой проблемы практически нет.

Суммируя все вышеперечисленное, можно заключить, что современные дизели по надежности не уступают бензиновым двигателям. Но приобретение их с целью экономии средств на топливо оправдывает себя лишь в том случае, если автомобиль используется долго.

Принцип работы

Как и бензиновые двигатели, дизельные моторы подразделяются на четырехтактные и двухтактные в зависимости от принципа работы. Двухтактные двигатели распространены достаточно слабо. О принципе работы четырехтактного дизельного двигателя читайте далее.

Рабочий цикл такого двигателя состоит из четырех тактов:

  1. Впуск (впрыск). На этом такте коленчатый вал поворачивается от 0 до 180-ти градусов и достигает нижней мертвой точки. Воздух попадает в цилиндр через открытый впускной клапан. В это же время выпускной клапан открывается всего на 10-15 градусов, образуя перекрытие.
  2. Сжатие. Поршень, двигаясь вверх от 180-ти до 360-ти градусов, достигает верхней мертвой точки. Воздух при этом сжимается в более чем 16 раз, а впускной клапан в начале этого такта закрывается. Температура воздуха в двигателе может достигать от семисот до девятисот градусов по Цельсию.
  3. Рабочий ход, расширение. Коленчатый вал вращается от 360-ти до 540-ка градусов, снова достигая нижней мертвой точки. Как известно из физики, сильно сжатый воздух нагревается до очень высоких температур, из-за чего топливо, поступающее из впускного клапана, самовоспламеняется. На этом этапе проявляется важное отличие дизеля от бензинового двигателя. Дизельное топливо начинает подаваться еще до достижения коленчатым валом верхней мертвой точки (опережение зажигания). Продукты горения толкают поршень вниз. При рабочем процессе в дизельном двигателе давление газов постоянно, и благодаря этому они способны развивать больший крутящий момент. Пропорция топливовоздушной смеси в дизеле отличается от бензинового двигателя большим количеством воздуха.
  4. Выпуск. Когда коленвал поворачивается на 720 градусов, поршень выталкивает отработанные газы в открытый выпускной клапан. Газы выходят через выхлопную трубу, а весь цикл повторяется.

Особенности дизтоплива и двигателей на нем

Как и бензиновый двигатель, дизель работает на принципе сгорания жидкого топлива в цилиндрах. Но солярка обладает некоторыми специфическими особенностями, из которых происходят и отличия в конструкции дизельных и бензиновых моторов.

С точки зрения состава дизтопливо – смесь газойлевых и керосиновых фракций, получаемая после того, как из сырой нефти отгонят бензин.

Основное свойство дизтоплива – показатель воспламеняемости, который называют цетановым числом (аналогично октановому числу для бензина). Стандартные типы дизтоплив, имеющиеся в продаже на АЗС, имеют это число в пределах от 45 до 50.

Важно: для современных дизельных агрегатов чем выше цетановое число солярки, тем лучше.

Дизтопливо проходит предварительную очистку уже на заводе, а устранением посторонних фракций «на месте» занимается топливный фильтр. Очищенное горючее поступает по магистрали к ТНВД (входящий в состав дизельного мотора топливный насос высокого давления, назначение которого – создать давление на выходе), подающему его в форсунки, которые распыляют топливо в камеру сгорания. Там частицы дизтоплива смешиваются с разогретым от сжатия воздухом, и происходит воспламенение.

Важно: этот принцип отличается от бензиновых двигателей, где топливо воспламеняется от свечей зажигания: системы питания дизельных двигателей предназначена для работы от самовоспламенения топлива под давлением. Но и в дизелях есть свечи: там используются специальные элементы накаливания, обеспечивающие пуск двигателя «на холодную» и поддерживающие нужную температуру – они предварительно подогревают поступающий в цилиндры воздух. 

Среди прочих важных особенностей дизтоплива – его повышенная плотность и хорошая смазывающая способность. Другие существенные характеристики:

  • чистота горючего;
  • вязкость;
  • температура застывания.

По последнему параметру принято делить солярку на:

  • летнее дизтопливо;
  • зимнее;
  • арктическое.

Схема работы карбюраторной системы питания

Топливо (бензин) из бака подается насосом 7 по топливопроводам 5 в карбюратор 4. Через воздушный фильтр 1 в карбюратор поступает воздух. Приготовленная в карбюраторе из топлива и воздуха горючая смесь подается в цилиндры двигателя по впускному трубопроводу 2. Отработавшие газы отводятся из цилиндров двигателя в окружающую среду через выпускной трубопровод 3, приемную трубу 8 глушителей, основной 10 и дополнительный 9 глушители.

В системе питания бензиновых двигателей автомобилей обязательными элементами являются фильтры очистки топлива (у двигателей грузовых автомобилей — фильтры грубой и тонкой очистки), а также воздушный фильтр.

Топливо из бака через фильтры насосом подается к карбюратору, где смешивается в определенной пропорции с воздухом, поступающим через воздухоочиститель. Полученная горючая смесь из-за разрежения в цилиндрах двигателя с большой скоростью перемещается по впускному трубопроводу, при этом дополнительно перемешиваясь, и попадает в цилиндры двигателя, где и сгорает посредством искрового воспламенения от электрической свечи.

За счет давления образовавшихся при сгорании горючей смеси газов, воздействующих на детали и узлы кривошипно-шатунного механизма, осуществляется работа двигателя.

Диагностика форсунок бензинового двигателя и других составных частей топливной системы

Современные бензиновые моторы – инжекторные. Т.е. за впрыск топлива в них отвечают форсунки. Поэтому рассмотрение порядка диагностики топливной системы стоит начать именно с них.

В отличие от дизелей диагностировать систему питания бензинового мотора несколько проще. Все – благодаря более простой конструкции и отсутствию огромного давления в магистралях.

Делается это в следующей последовательности:

  • Проверка бензонасоса. В подавляющем большинстве автомобилей вы сможете услышать, как он начинает накачивать бензин в магистраль при включении зажигания после стоянки (слышно характерное жужжание). Если этого не происходит, есть смысл проверить его работу, подав напряжение напрямую с АКБ.
  • Измерение уровня давления топлива в системе. Оно производится при помощи специального манометра. Замер давления делается в разных местах топливной магистрали. При этом определятся производительность насоса и давление после топливного фильтра (причина некорректной работы системы может быть в его засорении), а также работа регулятора давления (если он вышел из строя – только замена: данный элемент не ремонтируется).
  • Проверка форсунок. Чтобы провести предварительную оценку их работы, достаточно снять рампу и включить бензонасос. Если на соплах появятся капли, значит имеет место нарушение герметичности. Для более качественной диагностики форсунок требуется специализированное оборудование: тестеры и мотор-тестеры для диагностики без снятия, а также специальные стенды для проверки инжекторов при условии демонтажа с машины.
  • Проверка системы улавливания паров бензина. Причина может быть в ее разгерметизации. Если слышен отчетливый запах бензина, возможно проблема в ней. Также в составе этой системы есть клапан, контролирующий поступление паров бензина во впускной коллектор. Если при подаче на него напряжения 12В ничего не происходит, клапан вышел из строя. Если слышен щелчок, значит все в порядке.

Конечно, не лишним при диагностике системы питания инжекторного двигателя будет использование автосканера. Сведения о многих неисправностях будут содержаться в ЭБУ. Получив соответствующий код ошибки, уже можно будет знать, где «копать».

Контроль исправности системы охлаждения

Система охлаждения необходима для создания и сохранения нормального температурного режима работы двигателя. В подавляющем большинстве современных автомобилей применяются жидкостные системы охлаждения с принудительной циркуляцией. Они включают следующие элементы:

  • радиатор с заливной горловиной;
  • вентилятор радиатора;
  • жалюзи радиатора;
  • трубопроводы, магистрали, краны;
  • рубашка охлаждения ДВС;
  • расширительный бачок;
  • термостат;
  • водяной насос (помпа).

Неисправности системы охлаждения двигателя могут повлечь его переохлаждение или перегрев. Под переохлаждением понимается снижение рабочей температуры до 70 градусов и ниже, что влечет перерасход топлива и падение мощности. Перегрев, то есть превышение порога в 100 градусов, также чреват падением мощность, может вызвать разгерметизацию (прорывы пара), а при длительной эксплуатации перегретого ДВС – заклинивание последнего.

Диагностика системы охлаждения включает проверку герметичности, контроль температурных точек срабатывания термостата, включения вентилятора и поворота жалюзи. Проверяется интенсивность циркуляции жидкости, то есть производительность помпы, определяется необходимость чистки радиатора и магистральных деталей.

Диагностические работы по системе зажигания

Предназначение системы зажигания – воспламенение рабочей смеси в цилиндрах двигателя в заданные моменты времени. Из этого следует, что основная сфера ее применения – карбюраторные и инжекторные ДВС. В состав системы зажигания по направлению движения энергии входят:

  • аккумуляторная батарея и генератор;
  • замок и ключ зажигания;
  • катушка зажигания;
  • конденсатор;
  • прерыватель и распределитель (классическая компоновка);
  • электронный блок (компоновка CDI);
  • низковольтные и высоковольтные провода;
  • свечи зажигания.

Все неисправности системы зажигания можно условно разделить на три группы: искра отсутствует вовсе, искра отсутствует в некоторых цилиндрах или искра присутствует, но не в требуемый момент времени. Это неизбежно отражается на характере работы ДВС. В первом случае все просто – если нет искры, нет воспламенения смеси. Во втором наблюдается так называемое «троение» двигателя, при котором существенно падает мощность и стабильность работы, наблюдаются сильные вибрации. Третий случай привод к чересчур раннему или позднему зажиганию, что означает снижение эксплуатационных характеристик автомобиля и ускоренный износ кривошипно-шатунного механизма.

Проверка исправности системы зажигания проводится в направлении, обратном направлению движения энергии. Сначала контролируется техническое состояние свечей и их колпачков. Высоковольтные и низковольтные провода прозваниваются при помощи мультиметра. После этого определяется момент зажигания, на основе чего делается вывод о необходимости регулировки, ремонта или замены распределительных устройств. Состояние катушки можно проверить, измерив ее индуктивность и сопротивление, а для АКБ и генератора решающими показателями станут напряжение и сила тока.

2.2. Проверка и регулировка угла опережения впрыска

Установка угла опережения впрыска топлива проводится для обеспечения правильного соотношения между положением плунжера ТНВД и поршня в цилиндре двигателя во время такта сжатия. Внешними признаками неправильно установленного угла опережения впрыска являются определенные отклонения в работе двигателя: при раннем впрыске двигатель запускается резко, но работает жестко, а при остановке двигателя наблюдается обратный удар; при позднем впрыске двигатель заводится плохо, работает мягко, слабо набирает обороты и не развивает необходимой мощности, дымность отработавших газов увеличивается.

Различают статические и динамический методы установки угла опережения впрыска.

Один из статических методов — установление угла опережения впрыска по определенным меткам. Чтобы определить угол опережения впрыска топлива для многоплунжерных насосов, к штуцеру первой нагнетательной секции вместо трубопровода высокого давления подсоединяют моментоскоп и проворачивают коленчатый вал двигателя до появления в моментоскопе топлива. Моментоскоп представляет собой короткий отрезок топливопровода 3 (рис. 2), соединенный резиновой или пластмассовой трубкой 2 со стеклянной трубкой 1 диаметром 1,0…1,5 мм.

Затем, медленно вращая коленчатый вал, определяют положение, в котором уровень топлива в стеклянной трубке моментоскопа начнет подниматься. После этого вал останавливают и определяют, какая риска с цифрой на маховике совпадает со стрелкой на картере маховика. Метки и риски для определения оптимального угла опережения впрыска топлива находятся на поверхности переднего шкива коленчатого вала (по его окружности, на передней крышке или корпусе двигателя и т.д.), обычно рядом с метками, указывающими положение поршня первого цилиндра в ВМТ. Зафиксированная таким образом величина и будет определять угол опережения впрыска топлива. Если этот угол не совпадает с паспортными данными, в легковых автомобилях отпускают болты крепления насоса высокого давления и проворачивают насос в направлении вращения коленчатого вала.

Другой статистический метод регулировки угла опережения впрыска топлива — изменение положения муфты привода. Он применяется в основном для грузовых автомобилей. Правильность установки угла опережения впрыска топлива проверяют еще раз путем проворачивания коленчатого вала и вторичного контроля совпадения всех меток.

Для двигателей с ТНВД распределенного впрыска наиболее точным методом установки угла опережения впрыска топлива является метод, основанный на использовании индикатора. Для проверки угла опережения проворачивают коленчатый вал двигателя до установки поршня первого цилиндра в положение ВМТ в такте сжатия, выворачивают центральную пробку на распределительной головке ТНВД и вместо нее устанавливают индикатор с удлинительным стержнем (рис. 3).

Для установки плунжера насоса в крайнее положение поворачивают коленчатый вал двигателя против часовой стрелки на 25…30°, ориентируясь по канавке на шкиве коленчатого вала (поршень при этом устанавливается в положение 25…30° перед ВМТ по углу поворота коленчатого вала двигателя). Стрелку индикатора устанавливают на нуль. Проворачивают коленчатый вал двигателя в ту и другую сторону на небольшие углы. Если плунжер насоса действительно установлен в крайнее положение, то при повороте коленчатого вала на небольшие углы стрелка индикатора отклоняться не будет. Далее проворачивают коленчатый вал двигателя по часовой стрелке (поршень перемещается в направлении ВМТ) до установки канавки на шкиве напротив метки ВМТ на передней части двигателя (метки на маховике напротив прилива на картере сцепления) и по показаниям индикатора определяют величину хода плунжера, которая для большинства топливных насосов составляет 0,75…1,00 мм. Если величина хода плунжера не соответствует указанному значению, ослабляют болты крепления топливного насоса и поворотом его в ту или другую сторону регулируют ход плунжера, затем затягивают болты крепления насоса и повторяют проверку.

Величина хода плунжера соответствует определенному углу опережения начала впрыска, поэтому иногда в технических характеристиках указывается угол опережения (запаздывания) впрыска. Динамический метод является самым точным методом определения угла опережения впрыска топлива. При работающем двигателе угол опережения впрыска изменяется за счет срабатывания корректирующих автоматов, поэтому проверка и регулировка угла опережения впрыска более точно проводится в динамике, т.е. при работающем двигателе, с помощью специальных приборов — стробоскопов (рис. 4, а). Стробоскопы используются как в комплектах с мотор-тестерами, так и самостоятельно.

Перед динамической проверкой угла опережения впрыска нужно убедиться, что двигатель прогрет до нормальной рабочей температуры и работает на регламентированной частоте вращения минимального холостого хода.

Импульс для включения стробоскопа может быть получен от следующих источников:

  • от трубки высокого давления первого цилиндра 6 или посредством установки последовательно с этой трубкой датчика давления 1 (рис. 4, б), а чаще с помощью зажима с индуктивным импульсным датчиком (рис. 4, в);
  • светочувствительного датчика, реагирующего на первую вспышку при воспламенении топлива в цилиндре;
  • датчика начала впрыска в рядных ТНВД; в этом случае требуется установка специального электронного блока.

Запустив двигатель на минимальной частоте вращения коленчатого вала, луч от неоновой лампы стробоскопа, вспыхивающий синхронно с вращением коленчатого вала, направляют на шкив (маховик). Если угол опережения впрыска установлен правильно, то вследствие стробоскопического эффекта подвижная метка будет казаться неподвижной и находиться напротив неподвижной метки.

Рис. 4. Внешний вид стробоскопа (а) и методы получения импульсов от датчика давления (б) и индуктивного импульсного датчика (в): 1 — датчик давления; 2 — зажим «массы»; 3 — трубопровод высокого давления; 4 — индуктивный импульсный датчик-зажим; 5 — электрический разъем; 6 — трубка высокого давления

Отсчет угла опережения впрыска при этом ведется по шкиву или маховику.

В случае использования индуктивного импульсного датчиказажима он обязательно должен быть установлен в определенном, регламентированном техническими условиями фирмы-изготовителя месте на трубке высокого давления, в противном случае полученные результаты окажутся неправильными. Некоторые фирмыизготовители дают корректирующую таблицу, связывающую значение динамического угла опережения впрыска с местом установки зажима вдоль трубки высокого давления, что особенно полезно в тех случаях, когда, например, точное место установки зажима для измерения на режиме холостого хода недоступно.

Использование индуктивного импульсного датчика позволяет также определить работоспособность муфты опережения впрыска на различных частотах вращения коленчатого вала.

Осциллографические методы диагностирования топливной аппаратуры дизельных двигателей широко распространены в случае применения мотор-тестеров с индуктивными импульсными датчиками. Примерный вид осциллограммы давления топлива на разных режимах работы дизельного двигателя показаны на рис. 5. В точке 1 начинается повышение давления в результате движения плунжера насоса, в точке 2 срабатывает нагнетательный клапан и при малой скорости движения плунжера давление несколько падает. В точке 3 соответствующей иглы форсунки давление падает, поскольку высвободившийся объем не успевает заполниться топливом. Точка 4 характеризует максимальное давление установившегося процесса впрыска. В точке 5, соответствующей посадке иглы форсунки, впрыскивание заканчивается, после чего происходит посадка в седло нагнетательного клапана плунжера. Импульсы остаточного давления (точка 6) появляются из-за недостаточной герметичности нагнетательного клапана.

Рис. 5. Осциллограммы давления топлива у штуцера форсунки в режиме холостого хода двигателя (а) и в режиме полной подачи топлива и максимальной мощности дизеля (б)

Величина сигнала S1 определяет затяжку пружины форсунки и статическое давление начала впрыскивания. Перепад давления р характеризует подвижность иглы форсунки. Максимальное давление впрыска S3 определяет эффективное проходное сечение сопел распылителя, а путем интегрирования на периоде впрыскивания tв можно оценить цикловую подачу топлива. Время задержки впрыскивания S2 характеризует зазор в плунжерной паре, вызывающий утечку топлива между гильзой и плунжером.

При появлении отдельных неисправностей вид осциллограмм изменяется (рис. 6).

Дублирование осциллограмм при диагностировании топливной аппаратуры дизельных двигателей может быть осуществлено в виде цифровой информации по основным параметрам (рис. 7).

Рис. 6. Вид осциллограмм при наличии неисправностей износа нагнетательного клапана (а) или плунжерной пары (б), одновременного износа нагнетательного клапана и плунжерной пары (в)

Рис. 7. Панель основных параметров впрыска топлива дизельного двигателя: Рmax — максимальное давление впрыска топлива; Pост — остаточное давление в топливопроводе высокого давления; ДЛИТ — длительность подачи топлива

Проверяем тормоза

Тормозная система служит для уменьшения скорости транспортного средства, его остановки и удержании на месте (в качестве средства предотвращения самопроизвольного начала движения). По назначению тормозные системы делят на рабочие, запасные вспомогательные и стояночные; по типу рабочего органа – на барабанные и дисковые; по типу привода – на механические, гидравлические и пневматические. Вот приблизительный состав классической тормозной системы легкового автомобиля:

  • педаль тормоза;
  • вакуумный усилитель;
  • главный тормозной цилиндр;
  • колесные тормозные цилиндры;
  • трубопроводы и магистрали;
  • разжимной кулак или привод суппорта;
  • тормозной барабан или диск;
  • тормозные колодки.

Неисправности тормозной системы особо опасны ввиду возможности потери управляемости, начала неконтролируемого заноса и других предпосылок дорожно-транспортного происшествия. Они могут быть вызваны износом колодок и рабочих поверхностей, выходом из строя одного или нескольких из тормозных цилиндров, попаданием атмосферного воздуха в систему. При подозрении на поломки в тормозной системе следует немедленно обратиться к квалифицированному специалисту для ее диагностики.

Проверка начинается с измерения свободного хода педали и сопоставления данных с нормой. Затем определяется эффективность и симметричность торможения – для этого лучше всего подойдет стенд с беговыми барабанами. Изучается рабочее давление в системе и ее герметичность, определяется степень износа в механических узлах и коэффициент усиления давления на педаль. В случае необходимости после завершения диагностики выполняется замена деталей, заливка новой тормозной жидкости, прокачка системы.

Методика контроля электронных систем

В современном автомобилестроении массово применяются электронные системы обеспечения активной и пассивной безопасности водителя и пассажиров. Принцип их действия, особенности устройства и даже названия могут кардинально различаться в зависимости от производителя, класса и модели автомобиля, однако в диагностировании этих систем есть общие черты.

Контрольно-диагностические операции выполняются с помощью специального ПО, устройства с которым подключаются к бортовой компьютерной сети автомобиля. Программа собирает статистику использования систем, моменты их срабатывания и характер изменения дорожной ситуации в эти моменты. В случае необходимости она же помогает заменить устаревшую или деффектную прошивку устройства. На основе анализа собранной информации важно сделать правильный вывод об исправности электронного блока системы безопасности и комплекса ее датчиков.

2.3. Поэлементное диагностирование и устранение неисправностей

Поэлементное диагностирование включает: проверку работы форсунок, проверку на стендах ТНВД, диагностирование топливного и топливоподкачивающего насосов. Качество работы форсунки можно проверить на работающем двигателе. Для этого ослабляют гайку крепления топливопровода высокого давления к форсунке. Если форсунка исправна, то при ее отключении изменятся звук работы двигателя и дымность выхлопа. При неисправной форсунке звук работы двигателя изменяется незначительно или не изменяется совсем.

Для снятия форсунок отсоединяют топливопроводы высокого давления и трубку сброса топлива, затем форсунки выворачивают. При установке форсунок их затягивают с необходимым моментом динамометрическим ключом с заменой уплотнительных шайб. Превышение момента затяжки форсунок может вызвать деформацию резьбы головки блока, появление трещин прилива на головке в месте крепления форсунки, застревание иглы и другие неисправности.

Работоспособность демонтированных форсунок проверяют на специальных стендах с ручным или электрическим приводом насоса. В качестве технологической жидкости для проверки форсунок старых конструкций топливной аппаратуры используют смесь отстоенного дизельного топлива марки «Л» с веретенным либо авиационным маслом; вязкость смеси (9,9…10) · 106 м/с. Для проверки форсунок конструкций топливной аппаратуры с электронным управлением используют специальную жидкость в соответствии с международным стандартом ISO 4113.

Для испытания форсунок на стенде КИ-3333А (рис. 8) форсунку 2 вставляют в специальное устройство для крепления 10. Действуя рукояткой 9 со скоростью 60…80 качаний в минуту, наполняют каналы форсунки топливом до появления струи топлива из распылителя. По манометру 4 определяют давление в начале впрыскивания, одновременно проверяют качество распыления топлива форсункой. Распыленное топливо отсасывается вентилятором, имеющим привод от пневмотрубки или электродвигателя. Топливо впрыскивается в прозрачную камеру 3 с подсветкой.

Герметичность распылителя по запирающему конусу проверяют при отрегулированном давлении начала впрыска, после чего понижают давление на 1,0…2,5 МПа. Это давление удерживается в течение 10 с. Затем к головке распылителя прижимают лист чистой бумаги; если бумага остается сухой или на ней есть влажное пятно диаметром до 3 мм, то это указывает на герметичность распылителя; если диаметр влажного пятна больше 3 мм или бумага влажная, значит, распылитель негерметичный.

Рис. 8. Общий вид стенда для испытания форсунок КИ-3333А: 1 — корпус; 2 — форсунка; 3 — камера впрыскивания; 4 — манометр; 5 — секундомер; 6, 7 — рукоятки клапанов соответственно манометра и насоса; 8 — пробка заливной горловины для топлива; 9 — рукоятка привода насоса; 10 — устройство для крепления форсунки

Рис. 9. Форма струи распыла: а — правильная; б — неправильная

В случае если давление не соответствует заданным диапазонам, необходимо разобрать форсунку и заменить регулировочную шайбу (легковые автомобили) или отрегулировать давление с помощью регулировочного винта (грузовые автомобили).

При проверке форсунок частота качаний рычага должна быть 60…90 в минуту. Распыляемое дизельное топливо, выходящее из распылителя форсунки, должно быть туманообразным, т.е. без заметных отдельных капель, сплошных струек и легкоразличимых местных сгущений. Струя должна быть с явно выраженным конусом 10…20° (рис. 9).

Характерный «детонационный» звук при проверке форсунки не должен восприниматься как ее неисправность.

В случае неудовлетворительных результатов проверки форсунки разбирают и прочищают.

Для проверки форсунок без снятия их с двигателя могут применяться более простые приборы типа NC 251 (рис. 10), преимуществом которых является возможность проведения проверки непосредственно на дизельном двигателе без демонтажа форсунок.

Прибор состоит из штуцера 1 для подсоединения форсунки к топливопроводу, манометра 2, насоса 3. С помощью такого прибора можно контролировать давление в начале впрыскивания и герметичность посадки иглы форсунки.

Поэтапное диагностирование включает проверку ТНВД на стендах. Современный стенд для проверки топливных насосов дизельных двигателей (рис. 11) состоит из корпуса 1, на который устанавливают проверяемый насос, приводимый в действие с помощью электродвигателя стенда через соединительную муфту 4. Изменение частоты вращения электродвигателя стенда осуществляется рукояткой 5. Топливо от проверяемого насоса подается к эталонным форсункам стенда 2, закрепленным на стойке. Контроль за работоспособностью форсунок осуществляют по монитору или непосредственно по мензуркам, в которые выливается топливо из контрольных форсунок. Для определения давления и разрежения при работе ТНВД предусмотрен блок манометров 3 и вакуумметр.

Рис. 11. Стенд для проверки плунжерных топливных насосов дизельных двигателей

В связи с возрастающими требованиями по снижению расхода топлива, токсичности отработавших газов и повышению эффективной мощности дизеля возрастает потребность в более точной диагностике и регулировке ТНВД.

Регулировка ТНВД производится на специализированном стенде, который воспроизводит условия работы топливной аппаратуры на дизеле. Так как конструкции ТНВД имеют как общие решения, так и значительные отличия, особенно в части электронного управления, то для потребителя важно найти оптимальный баланс между функциональным исполнением стенда, необходимым для регулировки ТНВД, и денежными затратами на приобретение требуемого оборудования соответствующего качества. На рис. 12 представлена обобщенная функциональная схема стенда для проверки и регулировки ТНВД.

Рис. 12. Обобщенная функциональная схема стенда для проверки и регулировки ТНВД: 1 — форсунки; 2 — датчики фаз; 3 — система измерения цикловой подачи; 4 — шторки; 5 — мензурки; 6 — расходомер; 7 — аккумулятор давления; 8 — электронная система управления подачей; 9 — преобразователь частоты; 10 — электродвигатель; 11 — ТНВД; 12 — стробоскоп; 13 — система подачи воздуха; 14 — система создания вакуума; 15 — система подачи масла; 16 — система термостабилизации; 17 — охладитель; 18 — топливный бак; 19 — нагреватель; 20 — подкачивающий насос; Дэ — датчик давления эталонного топлива; Дч — датчик частоты вращения вала привода; Дм — датчик давления масла; Дв — датчик давления воздуха; Дт — датчик давления топлива; — направление циркуляции эталонного топлива; — интерфейсная связь с системой управления и контроля

На современных стендах установлены асинхронные электродвигатели, которые воспроизводят вращательное движение от дизеля, передающееся на вал ТНВД через приводную муфту. Управление электродвигателем осуществляется частотным преобразователем, параметры которого программируются определенным образом, чтобы разгонные и тормозные характеристики соответствовали устанавливаемым ТНВД, а также условиям эксплуатации стенда. Поскольку проверка происходит на постоянной частоте вращения вала ТНВД, то должна соблюдаться стабильность частоты вращения, обеспечиваемая инерционностью маховика, установленного на валу стенда, и автоматической системой поддержания частоты вращения. Система управления получает сигналы от датчика частоты вращения вала и вырабатывает обратный сигнал значения частоты, передающийся преобразователю частоты, который в свою очередь задает режим работы электродвигателя.

Главным параметром характеристики стенда является мощность электродвигателя. Выбор привода стенда по мощности производится в соответствии с очевидными закономерностями: чем больше производительность ТНВД, тем больше момент сопротивления вращения и тем больше должна быть мощность привода.

С ужесточением требований по снижению токсичности отработавших газов (Евро-4, Евро-5) на современных ТНВД типа Common Rail повышается давление впрыска, что повышает момент сопротивления вращения. В настоящее время считается, что привод мощностью 15 кВт обеспечивает работоспособность ТНВД отечественного и импортного производства, эксплуатируемых на грузовых и легковых автомобилях. Опыт показывает, что в некоторых случаях указанной мощности достаточно и для ТНВД дизелей, устанавливаемых на тепловозах и карьерных самосвалах. Для гарантированной работоспособности ТНВД на стенде требуется привод в 18 или 22 кВт.

Для установки ТНВД на стенд требуются соединительная муфта и установочные кронштейны. Как правило, производители стендов изготовляют установочные комплекты кронштейнов для известных отечественных и зарубежных производителей ТНВД.

На отдельных стендах для регулировки ТНВД можно проверять и насос-форсунки, для чего необходимо иметь соответствующие муфты и адаптеры для привода от вала стенда и электронные управляющие устройства.

Основной параметр ТНВД, который необходимо контролировать независимо от конструкции насоса, — это производительность ТНВД на разных частотах вращения вала при определенных положениях органов управления (положение рейки топливного насоса, настройки регуляторов, электронного управления форсунками и т.д.) и условиях эксплуатации топливной аппаратуры (например, давления топлива перед ТНВД), а также разных параметрах эталонного топлива (температура, вязкость). Параметры регулировки задаются в тест-планах ТНВД заводом-изготовителем. Если топливная аппаратура имеет электронное управление, параметры задаются через специализированные электронные приборы, имитирующие штатные контроллеры на дизеле.

Циркуляция топлива в стенде происходит по замкнутому контуру и различается в зависимости от конструкции топливной аппаратуры. Из топливного бака подкачивающий насос подает топливо в ТНВД. Далее, если в конструкции топливной аппаратуры предусмотрен аккумулятор давления (Common Rail), то топливо накапливается в нем. В аккумуляторе поддерживается определенное давление, излишки стравливаются обратно в топливный бак. Затем происходит впрыск топлива форсунками. Излишки топлива по линии обратного слива поступают в топливный бак. Количество впрыснутого топлива и, при необходимости, излишнего топлива за цикл определяются в измерительной системе.

Характеристика впрыска зависит от гидродинамических параметров всех элементов нагнетательного тракта топливной аппаратуры и параметров топлива. С одной стороны, к топливу предъявляются определенные требования, а с другой — для обеспечения идентичности характеристики впрыска топлива по цилиндрам дизеля на всех нагнетательных трактах устанавливают элементы, специально подобранные по своим гидродинамическим параметрам (стендовые форсунки, трубки высокого давления и т.п.). Дизельное топливо и его пары токсичны, поэтому в качестве эталонного топлива используют специальные жидкости для калибровки дизельной топливной аппаратуры (стандарт DIN ISO 4113).

Нормативные показатели регулировочных параметров топливной аппаратуры, в том числе производительность ТНВД, соответствуют определенному типу эталонного топлива при заданной температуре, параметрам трубок высокого давления и стендовых форсунок или форсунок-калибров. К чистоте топлива предъявляются повышенные требования; для его очистки устанавливают фильтры (на рис. 12 не показаны). Для стендов известных западных фирм предусмотрена процедура замены отработавшего топлива после диагностики определенного числа насосов.

Все современные стенды имеют систему автоматической термостабилизации (см. рис. 12), состоящую из нагревательного и охладительного (обычно радиатор, обдуваемый воздухом) элементов. Температура топлива обычно 30…40 °С и поддерживается с точностью 2 °С.

При диагностике ТНВД маленькой производительности и низкой начальной температуре топлива происходит долгий нагрев, но стабильно поддерживается заданный температурный диапазон. Для ТНВД большой производительности нагрев происходит быстро из-за прокачки большого объема топлива и сильного сжатия в элементах самой топливной аппаратуры. При эксплуатации стенда с непрерывным циклом диагностики ТНВД или насосов с повышенным давлением топлива используется более эффективное жидкостное (вода, антифриз) и фреоновое охлаждение. Система управления стендом отслеживает уровень температуры топлива через сенсоры и при необходимости включает и выключает нагрев или охлаждение. Характеристики автоматической муфты опережения впрыска (зависимости угла разворота полумуфт от частоты вращения) топливных насосов отечественного производства определяют с помощью стробоскопа (см. рис. 12).

Для ТНВД, оснащенных гидропневматическим или пневматическим корректором подачи топлива по наддуву, необходимы системы подачи масла и воздуха. Для вакуумных регуляторов требуются вакуумные насосы (системы создания вакуума). Как правило, давление указанных систем контролируется по стрелочным манометрам.

Углы чередования подачи топлива секциями ТНВД определяются пьезоэлектрическими датчиками, установленными в узлах впрыска и реагирующими на ударную волну от впрыснутой струи, или датчиками давления (только для механических форсунок), установленными в топливных трубках (на рис. 12 они обозначены как датчики фаз).

Измерение цикловой подачи и обратного слива топлива производится с использованием мерных мензурок или с помощью автоматических расходомеров (BOSCH EPS 815, HARTRIDGE AVM2-PC), измеряющих в режиме реального времени количество топлива по секциям. Одновременно на мониторе компьютера строятся гистограммы расхода топлива для измеряемых секций.

При использовании мензурок топливо наливается в мензурки одновременно из всех секций в течение заданного количества циклов, а затем производится визуальное считывание уровня топлива по шкале на мензурке для определения цикловой подачи.

Обоим способам измерения цикловой подачи топлива присущи свои недостатки и преимущества. Автоматический способ более точный — точность зависит от погрешности расходомера. Значения подачи топлива автоматически попадают в программу, затем рассчитывается неравномерность подачи по секциям и выдается результат сравнения с нормативными значениями. При наливе топлива в мензурки визуально можно сразу определить разницу в подаче от разных секций и не проводить налив по нормативам тест-плана в полном объеме, сократив время регулировки, что актуально для механических ТНВД. В то же время точность измерений этим способом ниже по следующим причинам:

  • за достоверность считывания значений со шкалы мензурки отвечает регулировщик;
  • после слива на стенках мензурок остается топливо, которое при следующем измерении вносит дополнительную погрешность;
  • отдельные пузырьки, образующиеся при наливе, несмотря на установленные пеногасители, не позволяют четко определить границу уровня топлива в мензурке, поэтому предпочтителен нижний налив и слив (измерительный блок Motorpal), при котором пена практически не образуется.

Консоли современной системы управления и контроля за стендом и топливной аппаратурой реализуются в виде тахосчетчика в сопряжении с микроконтроллером или в более сложном варианте — персонального компьютера. Основные параметры, которые отображаются на консоли:

  • величина подачи топлива насосными секциями;
  • частота вращения вала ТНВД;
  • давление топлива после подкачивающего насоса;
  • температура топлива в топливном баке;
  • углы чередования подачи топлива секций ТНВД.

Для топливной аппаратуры, имеющей электронное управление, выпускаются всевозможные электронные приставки, которые имитируют сигналы управления и имеют собственные диагностические функции. На рис. 12 комплекс электронных приставок обозначен как электронная система управления подачей. Некоторые приставки имеют интерфейс сопряжения с персональными компьютерами для дополнительного сервиса, а другие не имеют собственных органов управления; весь внешний интерфейс выполнен на персональном компьютере.

Диагностирование топливного насоса высокого давления заключается в определении начала, величины и равномерности подачи топлива отдельными секциями.

Величину подачи топлива каждой секцией насоса определяют с помощью мерных мензурок при температуре топлива 25…30 °С. Насос проверяют совместно с комплектом исправных и отрегулированных форсунок на давлении впрыска (15  0,5) МПа и комплектом топливопроводов высокого давления длиной (400  3) мм. Перед началом проверки необходимо выявить плотность закрытия нагнетательных клапанов, которые не должны в течение 2 мин пропускать топливо под давлением 0,17…0,20 МПа при положении рейки насоса, соответствующем выключенной подаче.

После этого проверяют и регулируют работу всережимного регулятора на разных частотах вращения, при начале и окончании выдвижения рейки топливного насоса, а также при полном автоматическом выключении подачи.

Количество подаваемого топлива каждой секцией за один ход плунжера для двигателей ЯМЗ должно быть 105…107 мм3. Неравномерность подачи топлива между секциями насоса не должна превышать 3 % при полной подаче и номинальной частоте вращения 1050 мин-1 вала насоса.

Неравномерность σ (%) подачи топлива секциями определяют по формуле

где Vmax, Vmin — цикловая подача секцией соответственно с максимальной и минимальной производительностью.

Равномерность и величину подачи топлива каждой секции насоса регулируют смещением поворотной втулки относительно зубчатого сектора. Топливные насосы имеют автоматическую муфту опережения впрыскивания топлива, которая изменяет момент начала подачи топлива в цилиндр в зависимости от частоты вращения коленчатого вала. Установочный угол опережения впрыскивания топлива зависит от особенностей каждой отдельной муфты.

Начало подачи топлива секциями насоса определяют с помощью моментоскопов, устанавливаемых на выходные штуцеры секций насоса и градуированный диск, закрепленный на валу насоса. При повороте вала насоса его секции подают топливо в трубки моментоскопов. Определяя начало подачи топлива, необходимо следить, чтобы в момент начала движения топлива в трубке моментоскопа риска на шкиве коленчатого вала находилась напротив риски с цифрой на крышке шестерен распределения. Цифра у риски на крышке распределительных шестерен должна соответствовать цифре, выбитой на торце автоматической муфты, или риска с той же цифрой на маховике должна совпадать с указателем на картере маховика.

Момент начала движения топлива в трубке первого цилиндра фиксируют по градуированному диску. В последующие цилиндры топливо подается через периоды времени, соответствующие определенным углам поворота вала в соответствии с порядком работы двигателя. Например, в восьмицилиндровом насосе топливо подается секциями через 45°. Допустимая неточность интервала между началом подачи топлива любой секцией насоса относительно первой ±1/3°. Момент начала подачи топлива секцией устанавливают регулировочными болтами толкателя насоса.

Диагностирование топливоподкачивающего насоса — это определение его производительности при заданном противодавлении, а также давления при полностью перекрытом нагнетательном канале. Производительность топливоподкачивающих насосов, устанавливаемых на двигателях ЯМЗ, при номинальной частоте вращения 1050 мин-1 кулачкового вала и противодавлении в магистрали 0,50…0,17 МПа должна быть 2,2 л/мин, а максимальное давление — 0,4 МПа.

В случае использования стендов, не имеющих возможности проверок современных ТНВД, могут применяться дополнительные аксессуары, позволяющие расширить возможности таких стендов при проверке ТНВД.

Пневматический тестер регулятора ТНВД ДД-3200 (рис. 13) предназначен для имитации реальной работы двигателя при проверке насосов с автоматическим противодымным корректором или корректором по наддуву дизеля, с высотным корректором, устанавливаемых на автомобилях отечественного и иностранного производства, а также для проверки и регулировки ТНВД с вакуумным регулятором (насосы типа РЕS, устанавливаемые на автомобилях Mercedes).

Станция смазки ТНВД ДД-3100 (рис. 14) предназначена для обеспечения условий смазки при испытании на стенде ТНВД с циркуляционной системой смазки. Масло от напорного штуцера по трубопроводу подается к ТНВД; слив масла от насоса производится по сливному трубопроводу. Давление масла регулируется дросселем по манометру.

Дизельтестер ДД-3800 (рис. 15) предназначен для испытания насосов с электронным управлением. Выдает на исполнительные устройства ТНВД управляющие сигналы, аналогичные сигналам электронного блока управления двигателя. Позволяет измерять угол опережения впрыска, подачу топлива ТНВД с потенциометрическим и индукционным датчиком, проверять параметры датчика температуры топлива в ТНВД (термистора).

2.4. Проверка датчиков и исполнительных механизмов систем питания дизельных двигателей с электронным управлением

Большинство датчиков и исполнительных механизмов можно проверить с помощью осциллографа (осциллоскопа) и мультиметра (тестера).

При поиске неисправностей в электрических устройствах, для проверки параметров, которые при работе не изменяются или изменяются медленно (например, напряжение питания, сопротивление и т.п.), в большинстве случаев подходит мультиметр с цифровым дисплеем, позволяющий определять измеряемые параметры с большой точностью. Для регистрации величин, которые часто изменяются за короткий промежуток времени, применяют осциллограф. По форме кривой напряжения можно сделать выводы о неисправностях не только неэлектрических систем, например, по кривой напряжения датчика и частоты вращения коленчатого вала узнать можно о механическом повреждении или загрязнении датчика ВМТ.

Используя измерительные меню осциллографа, пользователь может быстро установить оси времени и напряжений, а также уровень запуска развертки. Компьютеризированные исполнения осциллографов позволяют также запоминать изображение измеряемых параметров.

Датчики представляют собой измерительные преобразователи, которые превращают физические величины (давление, температуру и др.) в электрический сигал. В большинстве случаев используется аналоговый сигнал напряжения, изменяющегося в соответствии с изменением измеряемой физической величины. Различают датчики с электрическим питанием и без него. Датчики с электрическим питанием имеют трехштырьковые разъемы (например, датчик Холла, датчик давления, датчик массового расхода воздуха), а датчики, не имеющие питания, — двухштырьковые разъемы (например, индуктивный датчик частоты вращения коленчатого вала или одновольтового -зонда).

У датчика с электрическим питанием в первую очередь следует проверить наличие напряжения питания, которое в большинстве случаев составляет 5,0 В (очень редко используется аккумуляторная батарея). Напряжение сигнала датчика 0,2…4,8 В. При напряжении 0 или 5 В блок управления показывает ошибку: 0 В указывает на обрыв, а 5 В — на короткое замыкание.

Преобразование электрических команд блока управления в механические, пневматические или гидравлические исполнительные процессы происходит, как правило, с помощью электромагнитов. В большинстве случаев электромагниты являются составной частью электромагнитных клапанов, однако могут воздействовать на исполнительный механизм непосредственно, например, через поворотный магнит в механизме управления распределительного топливного насоса с электронным управлением. Для плавного изменения управляющего усилия или величины открытия электромагнитного клапана блок управления постоянно включает и выключает электромагниты.

Отношение времени включенного состояния ко всему периоду называется скважностью и измеряется в процентах. При этом время одного цикла включения и выключения принимается за 100 %. Сила тока регулируется изменением отношения между временем включенного и выключенного состояний. Этот способ управления называется широтно-импульсной модуляцией (ШИМ). Он используется в системе зажигания, где существует понятие «угол замкнутого состояния контактов прерывателя». Управление осуществляется в соответствии со способом работы интерфейса компьютера.

Для проверки электрического исполнительного механизма осциллограф подсоединяют к «массовому» управляющему проводу, блоку управления и «массе» двигателя. После подсоединения измерительного прибора необходимо проверить, есть ли скважность и изменяется ли она в соответствии с рабочим режимом. Если скважность не определяется, опросом памяти неисправностей необходимо проверить, нет ли у блока управления причины для отказа в работе. Рециркуляция ОГ, например, отключается при выходе из строя массового измерителя расхода воздуха. Если в памяти неисправностей нет сведений о неисправности, то дефект находится в схеме переключения. Напряжение 12 В означает, что система электропитания исполнительного механизма и обмотка катушки электромагнита исправны. Дефект должен находиться между отрицательным полюсом обмотки катушки и «массой» двигателя. Если управляющий провод, идущий от блока управления, и «массовый» провод в порядке, причину неисправности следует искать в работе блока управления.

Усовершенствованные карбюраторные двигатели

Увеличение открытия дроссельной заслонки приводит к возрастанию воздуха, который проходит через карбюратор. В результате он ускоряется и создаёт дополнительную тягу в диффузоре. Это выступает причиной повышения расхода бензина. При этом необходимое соответствие между увеличением количества воздуха и горючего не выполняется.

За счёт этого топливно-воздушная смесь, изготовленная при большом открывании заслонки, является обогащённой Т.к. режимы работы ДВС разные, то смесь, произведённая простым карбюратором, по составу не соответствует требуемой. Во время малых нагрузок тяга в диффузоре такая низкая, что приготовить топливно-воздушную смесь вообще невозможно.

Чтобы убрать указанный недостаток устройство системы питания карбюратора укомплектовывают дополнительными приборами. При их использовании топливно-воздушная смесь, приготовленная во время разных режимов, очень близка к требуемой.

Машины на карбюраторах работают в следующих режимах:

  1. Пуск мотора. В этот момент топливо плохо испаряется, поэтому необходимо использовать богатую смесь.
  2. Холостой ход и малые нагрузки.
  3. Частичные нагрузки.
  4. Полные нагрузки.
  5. Резкое открывание заслонки. В таком режиме не должно быть смеси с повышенным содержанием воздуха.

Разные режимы функционирования ДВС сопровождаются включением соответствующих систем и устройств:

  • прибор для пуска;
  • система холостого хода;
  • главный дозирующий прибор;
  • экономайзер;
  • ускоряющий насос.

Опишем подробно каждый:

  1. Прибор для пуска уменьшает количество воздуха, который двигается по карбюратору. Одновременно растёт тяга в диффузоре. В результате распылитель основной системы дозировки опустошается, т.к. содержащийся в нем бензин вытекает и создаётся топливно-воздушная смесь. После того как произошла первая вспышка, воздух движется по автоматическому клапану на приборе для пуска. При нагревании мотора пусковое устройство необходимо приоткрывать вручную. Для автоматизации процесса на некоторых ДВС используется автоматика.
  2. Система холостого хода производит смесь во время бездействия главной дозирующей системы. Она состоит из распылителя с двумя отверстиями, регулировочного винта, двух каналов, воздушного и топливного калиброванных отверстий.
  3. Главный дозирующий прибор от простого карбюратора отличает наличие колодца, воздушного калиброванного отверстия. Последний соединяет колодец с атмосферой.
  4. Экономайзер вступает в работу на полных нагрузках. В зависимости от привода он может быть двух видов: механический или пневматический. В состав первого входят клапан, калиброванное отверстие, толкатель и его подвижная стойка. Длина толкателя регулируется. При определённой длине включается экономайзер. Пневматический прибор запускается при определённой частоте вращения коленвала.
  5. Ускоряющий насос функционирует при особых условиях движения машины. Например, при обгоне, подъёме

Применение описанных устройств позволяет сделать работу карбюраторного ДВС более эффективной, повысив его мощность и снизить расход топлива.

За счет чего движется бензин

Воздушный поток движется в 25 раз быстрее, чем бензин. Карбюратор работает по такому же принципу, что и пульверизатор. Между камерой с поплавком и диффузором имеется перепад давлений. Это приводит к тому, что бензин покидает поплавковую камеру, двигаясь по топливному калиброванному отверстию и распылителю к диффузору.

Затем горючее оказывается в главном воздушном канале. На сегодняшний день давление, при котором начинается транспортировка бензина, составляет 100 Па. Если же значение меньше, то по карбюратору двигается лишь воздушный поток.

Скорость воздушного потока, проходящего через диффузор, растёт. По этой причине давление в распылительной области снижается. Когда мотор не работает, разность давлений между камерой с поплавком и распылительной областью отсутствует.

Во время запуска мотора при всасывании в цилиндре возникает тяга. Т.к. распылительная область сообщается с цилиндром с помощью впускного трубопровода и главноговоздушного калиброванного отверстия, то тяга из цилиндра достигает распылительной зоны.

После этого появляется перепад давлений между камерой с поплавком и диффузором, что приводит к движению бензина из камеры в распылитель. Затем в главном воздушном канале горючее образует смесь с воздухом и движется к цилиндрам.

Движение воздуха и топливно-воздушной смеси

Ускорению воздуха при движении по диффузору способствует образованию тяги в распылительной области. Уменьшение размеров диффузора возможно лишь до определённого значения. В противном случае настанет момент, когда уменьшение диффузора приведёт к увеличению сопротивления для движения воздушного потока.

В результате упадёт мощность двигателя, потому что цилиндры станут меньше наполняться. Часть трубки, которая соединяет горловину диффузора с осью дроссельной заслонки, называется «смесительная камера».

При образовании топливно-воздушной смеси участвует не весь бензин. Это происходит по причине того, что часть бензина не испаряется и не перемешивается с воздушным потоком. Незадействованные капли горючего двигаются вместе с воздухом. Встречая на своём пути стенки смесительной камеры и выпускного трубопровода, остатки топлива откладываются на них.

При этом образуется плёнка, медленно движущаяся. Для её испарения производится нагрев впускного трубопровода во время работы ДВС. Существуют 2 вида подогрева:

  • с помощью жидкости, для этого используют систему охлаждения двигателя;
  • за счёт тепла выхлопных газов.

Как улучшить образование топливно-воздушной смеси

Сложность изготовления топливно-воздушной смеси заключается в том, что данный процесс осуществляется очень быстро. Воздух и смесь проходят через впускной тракт мотора со скоростью 30 — 100 м/c, а время образования смеси не превышает 20 мс. Факторы, которые улучшают смесеобразование и испарение бензина:

  • легкоиспаряющаяся жидкость в качестве горючего;
  • расширение площади парообразования за счёт распыливания бензина и обдува топливных капель;
  • уменьшение давления в той среде, в которую попадает горючее;
  • нагревание бензина и воздуха;
  • введение эмульсионной жидкости с помощью распылителя.

Неисправности топливной системы

Основная причина любых неисправностей системы питания дизельного двигателя – износ конструктивных элементов и узлов. Типичные неисправности, возникающие после определенного пробега двигателя – износ оси рычага регулятора и выход из строя резинового кольца уплотнения в магистрали низкого давления.

Еще одна распространенная проблема – накопление в узлах и магистралях грязи и нагара, от которых следует регулярно избавлять двигатель путем промывки.

Затрудненный пуск двигателя.

Возможные причины:

  • неисправность свечей накаливания;
  • неправильный сорт солярки;
  • завоздушивание системы;
  • износ элементов нагнетания топлива;
  • неисправность подкачивающего насоса/ТНВД;
  • неверно выставленный угол опережения топливоподачи;
  • поломка регуляторов или датчиков системы.

Двигатель потерял мощность.

Вероятные причины:

  • износ деталей ТНВД или нарушение регулировки;
  • неправильно установленный угол опережения;
  • изношенные или вышедшие из строя распылители форсунок;
  • слишком низкое давление в системе;
  • завоздушивание;
  • поломка подкачивающего насоса;
  • засорение фильтров.

Слишком большой расход солярки

Причины: 

  • неправильный угол опережения;
  • износ или разрегулирование ТНВД;
  • повреждение форсунок или их износ;
  • падение давления на впрыске;
  • забивание воздушного фильтра;
  • плохая компрессия;
  • утечки горючего из системы;
  • плохая герметичность системы топливоподачи;
  • засорение сливного топливопровода (идущего от ТНВД к баку);
  • сбой опережения впуска солярки или неверно выставленные обороты холостого хода;
  • иные неисправности ДВС.

Жирный черный выхлоп из трубы

Причины:

  • неполное закрытие клапанов или образование нагара, ведущее к плохому сгоранию смеси;
  • слишком поздний впрыск;
  • неверно выставленные зазоры клапанов;
  • падение компрессии в цилиндрах;
  • плохой топливный факел, формируемый форсунками.

Выхлоп белого или серого цвета, очень дымный.

Причины:

  • падение компрессии;
  • пробой прокладки ГБЦ;
  • неверное опережение подачи топлива;
  • двигатель переохлажден и нуждается в прогреве.

Мотор по ощущениям работает слишком «жестко»

Причины:

  • впрыск происходит слишком рано;
  • смесь в цилиндры поступает неравномерно;
  • разрегулированы или неисправны форсунки;
  • снижена компрессия.

Двигатель шумит

Причины:

  • один или несколько узлов топливной системы загрязнены (фильтры, форсунки);
  • система завоздушена;
  • неполадки с уплотнительными шайбами распылителей или самими распылителями.

Неровная работа на холостую и при езде

Причины:

  • неверно выставлены холостые обороты;
  • неполадки с топливопроводом на участке между фильтром и ТНВД;
  • повреждение опорной пластины ТНВД;
  • неверно выставлено опережение;
  • проблема с распылителями или форсунками, общие неполадки в топливной системе;
  • неисправность регулятора оборотов коленвала;
  • избыточное давление картерных газов.

Потеря мощности ДВС

Неисправность топливной системы в данном случае определяется нарушением регулировки качества и количества горючей смеси, поступающей в цилиндры. Ликвидация неисправности связана с необходимостью проведения диагностики устройства приготовления горючей смеси.

Недостаточное поступление (или отсутствие поступления) горючего в цилиндры двигателя

Некачественное топливо, длительный срок службы, воздействие окружающей среды приводят к загрязнению и засорению топливопроводов, бака, фильтров (воздушного и топливного) и технологических отверстий устройства приготовления горючей смеси, а также поломке топливного насоса. Система потребует ремонта, который будет заключаться в своевременной замене фильтрующих элементов, периодической (раз в два-три года) прочистке топливного бака, карбюратора или форсунок инжектора и замене или ремонте насоса.

Бензин не поступает в поплавковую камеру карбюратора

Чтобы проверить это предположение необходимо:

Снять воздушный фильтр.

Полностью открыть воздушную заслонку.

Нажав рукой на привод дроссельной заслонки посмотреть в диффузор первой камеры.

Должна быть видима тонкая струйка бензина из распылителя, насоса ускорителя.

Возможны два варианта:

Струйки бензина нет.

Бензин есть.

Первый вариант говорит, что нет бензина в поплавковой камере карбюратора.

Попадать туда он должен из бензобака по металлической и гибким трубкам через топливо заборник, находящийся в бензобаке, фильтр тонкой очистки, бензонасос и игольчатый клапан в карбюраторе.

Для определения повреждения, нужно отсоединить шланг от, топливо подводящего штуцера, карбюратора и нажать на рычаг ручной подкачки бензонасоса.

Если из шланга польется бензин довольно мощной струей, значит неисправность в игольчатом клапане карбюратора. В этом случае придется снять верхнюю часть карбюратора, предварительно отсоединив тросик управления воздушной заслонкой и шланг с топливовозвращающего штуцера. Осторожно приподнять ее. Перевернув вверх поплавками, осмотреть игольчатый клапан на предмет прилипания к гнезду и приподнимая и опуская поплавки просмотреть, как перемещается клапан. При необходимости устранить залипания или заклинивания клапана. Отвернув ключом на 13 топливо подводящий штуцер, осмотреть и очистить сетчатый фильтр. Перевернув в нормальное положение и заткнув топливо возвращающий штуцер, продуть насосом или компрессором входное отверстие карбюратора.

Если из шланга бензин не польется, то проблема в бензонасосе или засоренности топливо заборника, топливо проводов или фильтра.

Топливо проводы и топливо заборник можно прокачать насосом или компрессором для подкачки шин. Фильтр можно просто снять и заменить трубочкой подходящего размера. А вот с бензонасосом, посложнее. Иногда в жаркую погоду бензонасос не качает из-за перегрева. В этом случае помогает мокрая тряпка, положенная на бензонасос. Ну а если это не поможет тогда придется прибегнуть к помощи буксировщика. Хотя однажды, когда у меня был «Москвич 2140» я нашел следующий выход из подобного положения.

Вылил воду из бочка омывателя лобового стекла. Налил туда бензин. Соединил гибкой трубкой электрический насос омывателя с топливоприемным штуцером карбюратора. И доехал до дома, периодически подкачивая бензин в карбюратор насосом омывателя.

Топливная смесь не всасывается в цилиндры

Второй вариант — то есть если бензин в карбюраторе есть, а двигатель не заводится, говорит о том, что забита системы выпуска отработанных газов. Что препятствует наполнению цилиндров топливной смесью. Это может произойти при движении задним ходом, наехав на кучу песка или грунта, плотного снега или при попадании задними колесами в глубокую канаву. В этом случае необходимо осмотреть и очистить выходную трубу. Препятствовать свободному выпуску отработанных газов может и скопившаяся в глушителе или резонаторе ржавчина, как выйти из этого положения, я уже описывал здесь.

Ремонт системы питания бензинового двигателя

Самые распространенные неисправности системы питания бензинового двигателя с карбюратором являются:

  • Прекращение поступления топлива в карбюратор;
  • Формирование слишком обедненной и обогащенной смеси;
  • Течь топлива;
  • Затруднительно запустить ДВС;
  • Перерасход топлива;
  • Запах бензина в салоне и снаружи авто;
  • Потеря мощности ДВС, нестабильная и неустойчивая его работа;
  • Увеличение токсичности выбросов в любых режимах работы.

Чтобы не допустить появление таких неполадок, важно знать, что ведет к этому, и каким образом качественно выполнять ремонт системы питания двигателя.

Система питания ДВС вышла из строя? Доверьте задачи по выявлению причин сбоя и устранению неполадок мастерам тех, и в скором времени вы получите исправный автомобиль! Мы работаем с автомобилями любых годов выпуска. Предоставляем гарантию на работы.

Формирование бедной горючей смеси

Обедненная смесь имеет свои черты: мотор перегревается, временно теряет мощность, появляются «выстрелы» в карбюраторе.

Причины:

  • Низкое давление топлива — поступает через форсунки меньше необходимого;
  • Загрязненные форсунки. Происходит чаще всего из-за некачественного топлива;
  • Подсос воздуха в выпускной коллектор;
  • Мотор на обедненной смеси значительно теряет свою мощность, происходит это из-за долгого горения смеси, что приводит к понижению давления газов в цилиндрах мотора. Также случаются перегревания ДВС на такой смеси.

Воспользовавшись методом ручной подкачки горючего можно протестировать работу системы. Если проблем с этим нет, то проверяется на наличие подсоса воздуха. Необходимо запустить мотор и закрыть воздушную заслонку. Затем заглушить мотор и осмотреть внимательно места соединения карбюратора и выпускного трубопровода. При недостаточно плотных соединениях будут видны подтеки. Устраняется путем подтягивания гаек.

Если все с этим хорошо, система герметична, подтеков нет, проверяется уровень бензина в поплавковой камере, если нужно проводиться регулировка.

Производится осмотр жиклеров, при засорении продуваются воздухом.

Образование богатой горючей смеси

Нарушение состава смеси может привести к чрезмерному ее обогащению.

Формирование обогащенной топливной смеси проявляется в следующем:

  • Черный дым из трубы;
  • Перерасход бензина;
  • Перегревания ДВС;
  • Появление нагара в камере сгорания.

Что способствует возникновению богатой горючей смеси:

  • Повышенное давление топлива. Проблема либо в бензонасосе, либо в регуляторе давления горючего, которая стоит на топливной рампе. Время открытия форсунок остается тем же, но из-за того, что давление повышается через них проходит больше топлива;
  • Неисправность датчика массового расхода воздуха;
  • Неисправен адсорбер. Не работает система улавливания паров бензина;
  • Выход из строя форсунок. Форсунки не удерживают топливо под давлением, протекают;
  • Забитый воздушный фильтр;
  • Уровень горючего в поплавковой камере выше необходимого;
  • Неполадки в работе воздушной заслонки;
  • Повреждения диафрагм.

Проверка и ремонт системы питания двигателя в таком случае осуществляется путем осмотра поплавковой камеры. Необходимо осмотреть поплавковый механизм, если есть заклинивания – проблему устранить. Уменьшить уровень горючего до необходимых показателей. Обязательно выполняется осмотр клапана на герметичность. Все другие неполадки, которые приводят к формированию обогащенной смеси топлива можно устранить только ремонтом карбюратора.

Увеличение расхода топлива

Выход из строя карбюратора — одна из причин перерасхода. Обнаружить причину данной проблемы можно только путем осмотра и диагностики топливоподающих элементов системы питания двигателя.

Течь топлива

Подтеки появляются в случае:

  • Наличия неплотных соединений;
  • Повреждений топливной магистрали;
  • Негерметичности диафрагм насоса.

Подтеки, особенно, если это бензин, нужно сразу же ликвидировать, это ведет не только к перерасходу, но и большая вероятность возникновения пожара в автомобиле.

Топливо не поступает в карбюратор

Ремонт системы питания двигателя необходим в ситуации, когда бензин не доходит до карбюратора. Происходит это, когда горючее не может пройти по трубкам из-за того, что забиты мусором топливопровода, насос неисправен, загрязнены фильтры очистки.

Проверка топливной магистрали на засор

Поиск причины этого, в данной ситуации, заключается в следующем:

  1. Отсоединяется от карбюратора шланг подачи топлива.
  2. Данный конец шланга необходимо поместить в какую-либо емкость.
  3. Прокачать топливо с помощью рычага ручной подкачки, либо провернуть коленчатый вал стартером.

Если в результате данных действий топливо течет не с нужным напором, или не течет вообще, в таком случае необходимо прочистить топливную магистраль от мусора. Либо же имеется неисправность в насосе.

Проверку насоса для достоверности лучше выполнять как минимум 2 раза.

Если в результате ручной прокачки нет сопротивления на рычаге, и горючее не течет, в таком случае имеет место поломка топливного насоса. Если же сопротивление имеется, и оно значительное, то вероятнее всего засорена сама магистраль. Данная проблема решается путем продува. Сделать это можно специальным насосом или компрессором.

Для продувки топливной магистрали, первым делом надо отсоединить ее от насоса, а после этого продуть. Если сделать это не получается, даже под высоким давлением, ее придется заменить.

Помимо топливной магистрали может быть засорена топливоприемная трубка с сетчатым фильтром бака. Трубку нужно извлечь и прочистить. После очистки магистрали, рекомендуется промыть бак теплой водой, чтобы убрать в полной мере все загрязнения.

Если же, в результате проделанной работы засор не был обнаружен, либо устранен, а топливо, как и прежде не поступает, необходимо проверить на исправность насос.

Осмотр и ремонт топливного насоса

Выделяют самые распространенные проблемы:

  • Разрыв диафрагмы;
  • Выход из строя пружины диафрагмы;
  • Износ рычага;
  • Выход из строя пружин, держащих клапана;
  • Повреждения корпуса бензонасоса.

Диагностика начинается с визуального осмотра. Первым делом необходимо осмотреть имеются ли подтеки горючего. Появится они могут, если есть повреждения корпуса, негерметичные соединения, поломка диафрагмы.

В случае, если подтеки выявлены в местах соединений трубок и частей насоса, то нужно подкрутить гайки. Далее снимается крышка, и производится очистка сетчатого фильтра.

При выходе из строя диафрагм будут наблюдаться подтеки через нижнее отверстие в корпусе, соответственно повышенный расход топлива, увеличение давления и уровня масла. Стоит учесть, что при таких неполадках топливный насос будет продолжать работать. Вышедшие из строя диафрагмы отремонтировать невозможно, их необходимо заменить на новые.

Осмотр сетчатого фильтра карбюратора

В ситуации, когда топливная магистраль не загрязнена, насос работает исправно, производится смотр сетчатого фильтра. При необходимости прочистить и продуть его воздухом.

Ремонт карбюратора

Надежность работы карбюратора достигается за счет выполнения:

  • Регулярной очисткой и промывкой;
  • Регулярной проверкой герметичности;

Чтобы выполнить ремонт карбюратора необходимо сначала демонтировать его. После этого выполняется разборка и чистка. Сжатым воздухом продуваются все детали. Поврежденные детали нужно обязательно заменить. Затем карбюратор собирается и монтируется на свое место.

Бывают ситуации, когда устранить неисправности карбюратора возможно и не снимая его с машины. Разбирается при этом он не полностью.

1. Очистка и мойка деталей

Поступившие в ремонт карбюраторы подвергаются предварительной мойке. При разборке карбюратора снимаемые детали следует укладывать в специальные сортовики (металлические поддоны с ячейками и сетчатым или имеющим отверстия днищем) для сохранности мелких деталей — пружин, клапанов, винтов и т.д.

Все детали промывают керосином и тщательно очищают от грязи, используя волосяную щетку или специальную ультразвуковую установку. Жиклеры, детали привода ускорительного насоса и привода экономайзера для удаления смолистых отложений промывают ацетоном или скипидаром. Резиновые и прорезиненные детали перед промывкой ацетоном или растворителем на его основе должны быть сняты с карбюратора для предохранения от разбухания.

После промывки и сушки все каналы, жиклеры и распылители продувают сжатым воздухом. Для очистки жиклеров и распылителей не допускается применение стальной проволоки и ветоши. После промывки и обдувки сжатым воздухом детали карбюратора осматривают, измеряют и проверяют.

Как увеличить ресурс ТНВД?

Как мы уже сказали ранее, это одна из самых ответственных частей топливной системы.

Чтобы насос высокого давления прослужил дольше и неисправности топливной системы дизельного двигателя обошли вас стороной, нужно:

  • Не оставлять бак на ночь «полупустым». Так на его станках образуется конденсат, который затем проникнет в форсунки и насос.
  • Периодически производить слив отстоя через дренажную пробку.
  • Не ездить на пустом баке и постоянно горящей лампочке.

Техническое обслуживание системы питания двигателя

Регулярное ТО позволит избежать непредвиденных поломок. ТО состоит в следующем:

  • Осмотр мест соединения, проверка на герметичность;
  • Каждые 10-15 тыс км:
  • Промывка фильтра грубой очистки и замена фильтрующих элементов;
  • Проверка уровня масла в ТНВД;
  • Каждые 100 тыс км проверка и регулировка ТНВД;
  • Раз в год замена воздушного фильтра.
  • Каждые 20 тыс км проводится очистка карбюратора и проверяется его работа.
 


[spoiler title=»Источники»]

  • https://avtodvigateli.com/detali/sistema-pitaniya-karbyuratornogo-dvigatelya.html
  • https://xn--34-6kc4bzaa.xn--p1ai/remont/ustrojstvo-sistemy-pitaniya.html
  • https://ustroistvo-avtomobilya.ru/dvigatel/sistema-pitaniya-toplivom-benzinovogo-dvigatelya/
  • https://EuroAutoUfa.ru/obzory/remont-sistemy-pitaniya-karbyuratornogo-dvigatelya.html
  • http://k-a-t.ru/dvs_pitanie/1-karb_sistem/index.shtml
  • http://driverplanet.ru/stati/diagnostika-toplivnoy-sistemi-benzinovogo-dvigatelya
  • https://voditelauto.ru/%D0%B4%D0%B8%D0%B0%D0%B3%D0%BD%D0%BE%D1%81%D1%82%D0%B8%D0%BA%D0%B0-%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC-%D0%B0%D0%B2%D1%82%D0%BE%D0%BC%D0%BE%D0%B1%D0%B8%D0%BB%D1%8F/
  • https://extxe.com/17397/diagnostirovanie-i-to-sistemy-pitanija-dizelnogo-dvigatelja/
  • https://zen.yandex.ru/media/id/5c8ca9b909148900b5c8e549/vozmojnye-neispravnosti-sistemy-pitaniia-5cf271486ba33d00afc8b2b6
  • https://auto-word.ru/remont-sistemy-pitaniya-dvigatelya-auto/
  • https://extxe.com/16871/remont-sistemy-pitanija-benzinovyh-dvigatelej-vypolnjaemye-v-toplivnom-otdelenii/
  • https://AvtoSotka.ru/obzory-i-novosti/remont-sistemy-pitaniya-dizelnogo-dvigatelya-2.html

[/spoiler]