Что такое дифференциал в автомобиле и как он работает

История создания и назначение дифференциала

Конструкция дифференциала появилась практически одновременно с началом производства транспортных средств, оснащенных двигателем внутреннего сгорания. Разница была лишь в пару лет.

Первые машины были настолько нестабильными на поворотах, что инженерам пришлось ломать голову над тем, как бы передать одинаковую тягу на ведущие колеса, но при этом сделать так, чтобы они могли вращаться с разными скоростями на виражах.

Хотя нельзя сказать, что сам механизм был разработан после появления автомобилей с ДВС. Дело в том, что для решения управляемости первых авто была позаимствована разработка, которая до того применялась на паровых повозках.

Сам механизм был разработан инженером из Франции – Онесифором Пеккёром в 1825-м году. Работу над проскальзывающим колесом в машине продолжил Фердинанд Порше. При сотрудничестве его компании вместе с ZF AG (Friedrichshafen) был разработан кулачковый дифференциал (1935 год).

Массовое применение LSD-дифференциалов началось, начиная с 1956 года. Технологией пользовались все автопроизводители, так как она открывала новые возможности для четырехколесного транспорта.

Механическое истолкование

Пусть s = f (t) – расстояние прямолинейно движущейся материальной точки от начального положения (t – время пребывания в пути). Приращение Δs – это путь точки за интервал времени Δt, а дифференциал ds = f’ (t) Δt – это путь, который точка прошла бы за то же время Δt, если бы она сохранила скорость f'(t), достигнутую к моменту t. При бесконечно малом Δt воображаемый путь ds отличается от истинного Δs на бесконечно малую величину, имеющую высший порядок относительно Δt. Если скорость в момент t не равна нулю, то ds дает приближенную величину малого смещения точки.

Геометрическая интерпретация

Пусть линия L является графиком y = f (x). Тогда Δ х= MQ, Δу = QM’ (см. рисунок ниже). Касательная MN разбивает отрезок Δу на две части, QN и NM’. Первая пропорциональна Δх и равна QN = MQ∙tg (угла QMN) = Δх f ‘(x), т. е QN есть дифференциал dy.

Вторая часть NM’дает разность Δу ─ dy, при Δх→0 длина NM’ уменьшается еще быстрее, чем приращение аргумента, т.е у нее порядок малости выше, чем у Δх. В рассматриваемом случае, при f ‘(x) ≠ 0 (касательная не параллельна ОХ), отрезки QM’и QN эквивалентны; иными словами NM’ уменьшается быстрее (порядок малости ее выше), чем полное приращение Δу = QM’. Это видно на рисунке (с приближением M’к М отрезок NM’составляет все меньший процент отрезка QM’).

Итак, графически дифференциал произвольной функции равен величине приращения ординаты ее касательной.

Зачем в машине нужен дифференциал

Назначение дифференциала – передать вращение на оба колеса или обе оси, при этом позволить им вращаться с разной скоростью.

Если между колёсами обеспечить жёсткую связь, то в поворотах возникнут проблемы. Каждое колесо движется по своей дуге окружности с разными радиусами. Соответственно, путь они проходят различный, и скорость вращения будет отличаться.

При жёсткой посадке на единую ось резина начнёт пробуксовывать, машина крайне неохотно входить в повороты, а все механизмы трансмиссии будут испытывать запредельные перегрузки.

Дифференциал развязывает ведущие колёса, позволяя им свободно менять скорость, при этом сохраняет передачу на них крутящего момента, разделив его в определяемом конструкцией соотношении.

Где находится

Межколёсные дифференциалы располагаются в одном картере с редуктором ведущего моста, а межосевые обычно внутри раздаточной коробки.

Смазываются они из единой с редуктором масляной ванны, иногда довольствуясь тем же маслом, что и гипоидная пара шестерён, но часто требуя дополнительных свойств от присадок, если конструкция подразумевает повышенное трение.

Из чего состоит

В состав самых распространённых дифференциалов входят:

  • корпус (коробка) дифференциала, к которой прикладывается входящий момент через ведомую шестерню главной пары;
  • шестерни полуосей, надеты на шлицы выходных валов, через них вращение передаётся на колёса;
  • сателлиты, это небольшие шестерни, вращающиеся на осях, связанных с коробкой и входящие в зацепление с полуосевыми шестернями.

В коробке может быть два и более сателлитов, их количество зависит от величины нагрузки, передаваемой через редуктор. В самых распространённых случаях конических сателлитов легковых автомобилей их обычно два, для тяжёлых машин повышенной проходимости (джипов) количество возрастает до четырёх.

Нюансы применения

ДФЦ необходимы для обеспечения передачи крутящего момента на ведущие колёса и ведущие мосты. Если говорить применительно к грузовому и легковому транспорту, то здесь подавляющее большинство автомобилей, вне зависимости от типа привода, используют межколёсный тип дифференциалов. Он требуется для передачи необходимого вращения колёсам.

Также существует понятие межосевого ДФЦ, который отвечает за распределение момента между мостами. Такая конструкция используется только на машинах с полным приводом.

В зависимости от используемой зубчатой передачи, различают червячные, конические и цилиндрические механизмы. А если отталкиваться от количества зубцов на шестернях полуоси, то деление идёт на несимметричные и симметричные.

В случае с мостами машин на полном приводе, оптимальным выбором считается несимметричный тип с цилиндрической передачей. Это объясняется способностью такой системы распределять момент пропорционально.

Для транспортных средств, имеющих задний и полный привод, принято использовать конические симметричные ДФЦ. Но специалисты отмечают, что наиболее универсальным вариантом является именно червячный вариант. Он подходит для всех устройств и для всех видов привода.

Схема работы

Для чёткого понимания сути следует понять, как работает на автомобилях дифференциал.

Поскольку самым актуальным вариантом для легковых автомобилей выступает именно конический межколёсный ДФЦ, принцип работы системы стоит рассмотреть на его примере. Это позволит понять, как устроен и как функционирует автомобильный дифференциал в различных эксплуатационных условиях:

  • при прямолинейном движении;
  • в повороте;
  • при пробуксовке.

Каждую ситуацию стоит рассмотреть отдельно.

  1. Прямолинейное движение. Когда авто движется прямолинейно, нагрузки между колёсами распределяются равномерно. Они движутся с одинаковыми показателями угловой скорости. Расположенные в корпусе ДФЦ сателлиты не осуществляют вращения вокруг своей оси. Крутящий момент передаётся на полуоси с помощью неподвижного зубчатого зацепления от ведомой шестерни главной передачи.
  2. Поворот. Здесь речь идёт уже о несколько ином принципе работы автомобильного дифференциала. В этой ситуации происходит распределение нагрузок и сил сопротивления определённым образом. У внутренних колёс с меньшим радиусом поворота воздействующее сопротивление обладает большей силой в сравнении с наружными колёсами. Поскольку нагрузка возрастает, это заставляет снижать их скорость вращения. При этом наружное колесо перемещается по большему радиусу, а потому угловая скорость увеличивается. Это необходимо для плавного поворота без явных пробуксовок. То есть ДФЦ задаёт колёсам разную угловую скорость. Когда полуось внутреннего колеса вращается с меньшей скоростью, это заставляет двигаться сателлиты. Они с помощью конической передачи повышают скорость вращения уже наружной покрышки. При этом крутящий момент, который идёт со стороны главной передачи, не меняется.
  3. Пробуксовка. Даже если автомобиль движется прямолинейно, но в условиях бездорожья или скользкой дороги, появляются различные нагрузки, включая пробуксовки. Когда буксует одно колесо, оно теряет сцепление с поверхностью дорожного полотна. Параллельно второе колесо нагружается сильнее и его скорость вращения снижается. Это напоминает поворот по схеме движения. Только в этой ситуации машине наносится вред, поскольку пробуксовывающее колесо потенциально может взять на себя весь крутящий момент от дифференциала, а нагруженное прекратит своё вращение. Это заставит машину остановиться. Чтобы решить такую проблему, используются системы курсовой устойчивости, а также автоматическая и ручная блокировка межосевых дифференциалов, что актуально для внедорожных авто.

Вопрос блокировки вообще заслуживает отдельного внимания, поскольку без неё могут проявляться всевозможные недостатки классической конструкции ДФЦ.

Самоблокирующийся дифференциал

Как понятно из названия, решает когда «прийти на помощь», сам. Он имеет разновидности конструкции, разберем его отдельно.

Дифференциал повышенного трения или еще можно услышать — LSD, но все это названия одного механизма. В зависимости от ситуации и необходимости, может работать, как обычный дифференциал, а может жестко себя блокировать, если появиться разность в:

  • угловых скоростей;
  • разность в крутящем моменте.

Вот по этому принципу и различают особенности его конструкции.

1. Дисковый механизм

Разновидностей имеет массу, но принцип работы один — обеспечить блокировку во время плохого сцепления, на льду или яме, одного из колес, по средствам фрикционных дисков. Таких дисков целый пакет, одни крепятся к полуоси, а другие к корпусу дифференциала. Во время обычной поездки диски разжаты и на движение колес не влияют.

1 — корпус; 2,4 — шестерни полуосей; 3,5 — наборы фрикционных дисков; 6 — ось блока сателлитов; 7 — раздвижные полукольца.

При потере сцепления — фрикционные диски полуосей, и дифференциала сжимаются и крутящий момент передается от дифференциала на полуось напрямую, без участия сателлитов. Т.е. крутящий момент в основном перейдет на ту полуось, которая вращается медленнее. А все, благодаря силе трения, происходящей между фрикционными дисками.

Если в машине предусмотрен гидравлический привод, то степень сжатия будет переменной, а если установлен пружинный механизм — регулярная. Применяется как в качестве межколесного дифференциала, в основном в спортивных авто, либо между осями у полноприводных внедорожников.

2. Вязкостная муфта (вискомуфта)

Используется крайне редко, из-за своих ощутимых недостатков:

  • несовместимость с некоторыми ABS;
  • частые случаи перегрева.

Т.к. вискомуфта имеет внушительные размеры, то и применяется лишь между осями. Правда, случаются прецеденты, установки ее место дифференциала при полном автоматическом приводе. Название она свое получила из-за особенности работы.

Набор перфорированных дисков, помещен в супер вязкую жидкость (силикон), и запечатан в герметичный контейнер. Так же как и в случае с дисковым дифференциалом, пакет дисков поделен на две части, одни на ведущем вале, другие на ведомом. Если ведущий вал набирает обороты, прикрепленные к нему диски, также ускоряются. При этом они взбивают силикон, который затвердевает и блокируется с дисками ведомого, происходит блокировка дифференциал. Когда скорость вращения стабилизируется — жидкость вернется к исходному состоянию. 

3. Червячный (винтовой) механизм

Имеет свойство частично блокировать дифференциал в зависимости от величины крутящего момента. Внутри механизма, вместо привычных сателлитов, располагается червячная передача, замысловатой конструкции. Придумали её еще в 1958 году, а актуальна она и по сей день. Самые популярные Torsen T-1, Torsen T-2 и Quaife.

Особенность данного типа блокировки в том, что процесс переноса крутящего момента возможен лишь от ведущей шестерни (самого червяка) к ведомой (полуосевой), из-за больших сил трения. Как это работает? В разных конструкциях T-1 или T-2, особенности построения червячного механизма, отличаются только расположением сателлитов. В Т-1 поперечно корпусу, а в Т-2 — продольно. Конструкция Torsen обоих поколений настолько чувствительна, что колесо, попавшее на лёд, не успевает физически пробуксовать. Широкое применение они нашли как в межосевых так и в межколесных дифференциалах.

4. Электронная блокировка

По сути, данный вид не является дополнительным конструктивным элементом дифференциала и не блокирует его. Всю работу на себя берет тормозная система, под управлением антипробуксовочной системы и запускается по средствам датчика. Реагирует электронная блокировка на изменение в угловой скорости ведущей оси.

Принцип действия основывается на управлении дифференциалом по средствам программного обеспечения. Если колесо теряет сцепление, возникает в тормозной системе давление, и оно замедляется, увеличивая тем самым тяговую мощность. Крутящий момент, в этом случае, перераспределяется на другое колесо.

Как устроен дифференциал

Традиционный дифференциал устроен просто и гениально. Принципиальная схема его единая, но некоторые сопутствующие технические нюансы могут отличаться в зависимости от типа привода автомобиля.

Наиболее распространенный конический симметричный дифференциал состоит из следующих основных компонентов — корпус, сателлиты (малые конические шестерни), ось сателлитов и полуосевые шестерни. Ведущая шестерня ведущего вала имеет форму конуса и обеспечивает контакт с механизмом дифференциала, а ведомая шестерня приводится ведущей шестерней. Вместе они представляют собой главную передачу или главную пару.

Кстати, дифференциал называется симметричным, поскольку распределяет подводимую тягу поровну вне зависимости от соотношения угловых скоростей колес.

Сколько дифференциалов применяется

Количество дифференциалов может отличаться в зависимости от типа привода. На автомобилях, имеющих одну ведущую ось, присутствует один межколесный дифференциал, который объединен с главной передачей. На полноприводных автомобилях межколесные дифференциалы устанавливаются в каждой ведущей оси. Также устанавливается межосевой дифференциал — он распределяет мощность между ведущими осями в зависимости от длины пути, который проходят колеса.

В системе полного привода типа парт-тайм межосевой дифференциал не применяется — передняя ось подключается жестко и со всеми ведущими колесами эксплуатация допустима только в условиях, когда возможно их взаимное проскальзывание. То есть, в снегу, в грязи, в песке. На ровной твердой поверхности езда с подключенной передней осью провоцирует повышенный износ элементов системы полного привода типа парт-тайм.

Недостаток дифференциала

Применение блокировок, речь о которых пойдет ниже, обусловлено главным недостатком конструкции дифференциала. Дело в том, что дифференциал способен передавать до 100% мощности на одно из ведущих колес. Соответственно, если колесо теряет сцепление с дорогой, то автомобиль не сможет тронуться с места, так как второе не вращается. Происходит это из-за того, что момент сопротивления вращению свободно вращающегося колеса минимален, а, соответственно минимален и крутящий момент, который к нему подводится. Значит, минимальна тяга и на противоположном колесе. И пусть вас это не удивляет, ведь крутящего момента без сопротивления не бывает.

Механизмы блокировки дифференциала

Наиболее простой считается так называемая ручная принудительная блокировка дифференциала, которую обычно можно увидеть на внедорожниках. Происходит блокировка сателлитов благодаря блокировочным муфтам. Система простая и надежная, от водителя требуется лишь не забывать ее отключать при движении по ровному твердому покрытию, иначе можно вывести из строя главную пару и мост.

Противоположностью ручной механической блокировке является электронная блокировка или электронная имитация. Применяется она на современных автомобилях, чьи вспомогательные системы позволяют реализовать данный принцип, собственно, без дополнительного механизма в дифференциале. Одно из колес начинает «обгонять» другое, управляющий блок антипробуксовочной системы получает соответствующий сигнал и колесо замедляется тормозными механизмами. Так как у автомобилей с электронной имитацией блокировки применяется свободный дифференциал, то мощность передается на колесо, имеющее недостаточное сцепление с поверхностью. Электронная имитация позволяет преодолевать пересеченную местность и бороться с диагональным вывешиванием, но ее эффективность может снижать недостаточное быстродействие.

Вопросы касательно быстроты срабатывания есть и к вязкостной муфте (вискомуфте). Устроена она следующим образом. В корпус главной пары установлены два пакета дисков, соединенные с левой и правой полуосью, пространство между которыми заполнено вязкостной жидкостью. При нагреве она меняет свои свойства. Когда одна из полуосей начинает вращаться с более высокой угловой скоростью чем другая, вязкость жидкости прогрессивно возрастает. Она сцепляет диски и выравнивает угловые скорости.

Эффективными типами блокировок дифференциалов является Torsen (сложно устроенный механический самоблокирующийся дифференциал с набором червячных шестерен) и винтовые, дисковые, кулачковые и другие механизмы на основе планетарной передачи, которым мы посвятим отдельный материал.

Ручная

Автомобили с принудительной ручной блокировкой дифференциала встречаются достаточно часто, несмотря на наличие более современных и усовершенствованных систем.

Ручная блокировка считается самой простой, поскольку для её отключения требуется непосредственное участие самого водителя.

Для реализации этой функции в транспортном средстве устанавливают специальные кнопки или рычаги, расположенные непосредственно в салоне на определённом расстоянии от водителя, чтобы тот имел возможность легко дотянуться до органа управления.

Используя этот рычаг или кнопку, автомобили блокирует вращение сателлита вдоль собственной оси. В итоге планетарная передача становится стандартной обычной муфтой.

Такие процедуры переключения следует выполнять только тогда, когда автомобиль полностью остановился, а педаль сцепления была выжата до упора.

Опытные водители настоятельно советуют применять блокировку только тогда, когда автомобиль движется на небольшой скорости, преодолевая сложные участки бездорожья. Если ДФЦ отключить, управление практически пропадает, и машина будет стремиться двигаться прямолинейно.

Учитывая все эти нюансы, можно с уверенностью сказать, что управление ручной блокировкой требует обязательного наличия определённых навыков и мастерства от водителя. Ручная блокировка реализована на достаточно популярных внедорожниках, которые оснащаются жёстким типом рамы.

Типы блокировки дифференциала

В зависимости от степени блокировка дифференциала может быть полной или частичной:

  • Полная блокировка подразумевает жесткое соединение элементов дифференциала, при котором крутящий момент может передаваться целиком на колесо с лучшей тягой
  • Частичная блокировка дифференциала характеризуется ограниченной величиной передаваемой силы деталей дифференциала и соответствующим увеличением крутящего момента на колесо с лучшей тягой

Существуют различные типы блокировок, но их обычно можно разделить на несколько больших групп:

  • дифференциалы, которые плотно блокируются (100%)
  • автоматическая блокировка дифференциалов
  • дифференциалы с ограниченным скольжением — LSD

Автоматическая блокировка дифференциалов

В отличие от ручной блокировки, при автоматической блокировке дифференциальное управление выполняется с помощью программного обеспечения. Когда скорость вращения одного колеса увеличивается, в тормозной системе создается давление, и его скорость уменьшается. В этом случае сила тяги становится выше, а крутящий момент передается на другое колесо.

Перераспределение крутящего момента и выравнивание угловых скоростей осуществляется под воздействием тормозной системы. Он программно управляется системой контроля тяги, автоматические блокирующие дифференциалы не оснащены дополнительными блокирующими компонентами и не являются LSD.

Может ли каждая машина иметь заблокированный дифференциал?

Блокировка дифференциала обычно применяется для спортивных автомобилях или внедорожниках. В частности, в случае внедорожников дифференциалы с механизмом блокировки уже установлены при сборке автомобилей. Хотя блокировка дифференциала рекомендуется особенно для внедорожников, вполне возможно, что блокировка дифференциала может быть выполнена на другом типе транспортного средства. Автомобили, которые не имеют блокировки дифференциала на заводе-изготовителе, могут быть доработаны и модернизированы.

Электронное управление

Важно понимать, что механическая блокировка не является единственной разработкой для современных автомобилей. Не только она позволяет улучить проходимость транспортных средств, а также повысить качество контроля за поведением машины на дороге в разных условиях.

Наглядным примером достойной альтернативы выступает система, где трансмиссия управляется специальной электроникой. Речь идёт о так называемом трекшн-контроле. Это схема, в которой реализован контроль тяги и сцепления автомобильных колёс. Основой трекшна выступает достаточно простой принцип. Система следит и корректирует частоту вращения колёс, используя для этого специальные датчики-контроллеры.

Когда колесо начинает пробуксовку, параллельно включается тормоз и крутящий момент переходить на иную полуось. Изначально может показаться, что в такой ситуации поведение машины будет аналогично ситуации, когда блокируется дифференциал. В действительности системы с электронным управлением оказались заметно эффективнее механических блокировок. Плюс они проще в конструктивном плане и обладают улучшенной надёжностью.

Интересной особенностью трекшн-контроля является то, что он не создаёт дополнительные помехи в работе дифференциала. Напротив, система очень удачно дополняет его.

Этим обусловлен тот факт, что современные внедорожники начали активно оснащать ДФЦ с электронным управлением. Эта система называется Traction Control.

Подводя итоги, можно сказать, что дифференциалы созданы для повышения уровня безопасности и комфорта при движении и маневрировании по трассам. Все недостатки, которые связывают с дифференциалами, относятся к их использованию в режиме экстремальных условий и бездорожья. И эту проблему также удалось решить с помощью различных систем блокировок.

Дифференциалы называют простыми, но в то же время невероятно важными компонентами трансмиссии. И это более чем справедливая характеристика для этих узлов.

Для чего нужна блокировка межосевого дифференциала

Следует заметить, что у любого дифференциала (в том числе и межосевого) наряду с его главным достоинством, состоящим в обеспечении разделения крутящего момента, есть и один существенный недостаток. Он является прямым следствием преимущества и заключается в том, что если колеса одной из осей начинают буксовать, то именно на них дифференциалом передается больший крутящий момент. Это существенно понижает проходимость автомобиля, что совершенно недопустимо для внедорожников. По этой причине практически все межосевые дифференциалы, устанавливаемые на них, оснащаются функцией блокировки.

Когда она включена, то на обе оси автомобиля передается одинаковый крутящий момент. Благодаря этому на те колеса, которые не пробуксовывают, транслируется такое же усилие, что и на пробуксовывающие. Это необходимо для того, чтобы машина могла миновать «скользкое место».

Принцип работы

Крутящий момент от двигателя через коробку передач передаётся на корпус дифференциала. У заднеприводных автомобилей посредством карданного вала, при переднем приводе дифференциал обычно устанавливается внутри КПП, образующей в таком случае моноблок трансмиссии, из которого наружу выходят уже шарнирные полуоси к колёсным ступицам.

Далее характер работы зависит от траектории движения и наличия достаточных сцепных свойств дорожного покрытия.

При прямолинейном движении

Когда автомобиль движется прямолинейно по гладкой поверхности с твёрдым сухим покрытием, обе полуоси вращаются с одинаковой угловой скоростью. Полуосевые шестерни находятся в покое одна относительно другой, весь дифференциал сильно похож на монолитную конструкцию.

Сателлиты, будучи связанными через свои зубья с обеими полуосевыми шестернями, относительно своих осей не вращаются. Момент распределяется поровну между осями, если дифференциал симметричный и свободный, то есть лишён блокировок. Впрочем, с блокировками в таком идеальном случае будет то же самое.

При повороте

В повороте, а это обычный режим работы дифференциала, поскольку идеальных прямых в природе не существует, одно из колёс всегда будет вращаться быстрее. Сателлиты придут в движение относительно своих осей, но связь между полуосевыми шестернями и корпусом не утратят. То есть момент продолжит передаваться от корпуса к колёсам, причём всё в том же соотношении 50/50.

Это очень любопытно рассмотреть с точки зрения мощности. Момент одинаков, а скорость у внешнего от поворота колеса больше, то есть и мощность на него передаётся пропорционально большая.

И это неудивительно, так как чем больше скорость, тем выше потери, которые компенсируются добавкой мощности. При этом ни малейших помех вращению колёс с разной скоростью создаваться не будет, в отличие от жёсткой связи.

При пробуксовке

Гораздо менее приятно дела обстоят в том случае, когда одно из колёс попало на относительно скользкий участок дороги и сорвалось в пробуксовку при разгоне. Сцепления с дорогой нет, а значит момент сопротивления покрытия резко падает. Но этот момент всегда равен тяговому, это закон физики. Значит и тяговый момент упадёт.

Свободный симметричный дифференциал делит тягу пополам между колёсами. Всегда 50/50. То есть при падении момента на одном до нуля, на втором он обнулится автоматически. Автомобиль начнёт терять скорость, а если речь идёт о трогании с места на льду или жидкой грязи, то он просто там и останется, не сумев выехать из засады.

В этом главный недостаток свободного дифференциала. Он может передать усилие только то, которое способно переварить колесо, находящееся в худших условиях. Даже если второе будет на сухом чистом асфальте, автомобиль никуда не поедет. Вся энергия уйдет на быстрое и бесполезное вращение буксующего колеса.

Виды дифференциалов

Конкретных реализаций дифференциалов много, если не говорить только о самом распространённом – коническом свободном. И классифицировать их можно по разным признакам.

Место установки

Для развязки колёс одной ведущей оси используется межколёсный дифференциал в редукторе ведущего моста. Если этот редуктор установлен в коробке передач переднеприводной машины – значит там и смонтирован дифференциал.

Некоторые машины оснащены постоянным полным приводом. Это означает, что он включён всегда. Но при этом оси могут иметь разную скорость, например, в том же повороте. И тогда в элемент трансмиссии, называемый раздаточной коробкой, внедряется межосевой дифференциал, работающий так же, как было рассмотрено в случае межколёсного.

Вид зубчатой передачи

По типу применяемых зацеплений дифференциалы подразделяются на:

  • самый распространённый – конический, по форме полуосевых шестерён и сателлитов;
  • цилиндрический, применяется значительно реже, но иногда по компоновочным и функциональным соображениям незаменим, напоминает планетарную передачу;
  • червячный, бывает построен разными способами, чаще всего этот тип зацепления используется в самоблокирующихся дифференциалах, червячные пары могут создавать значительное внутреннее трение.

От размеров и организации зубчатых пар зависит также и симметрия дифференциала. Иногда важно отправлять на одну ось больший момент, чем на вторую. Например, в некоторых версиях 4-matic от Mercedes 65% момента идёт на заднюю ось, 35 – на переднюю.

По принципу блокировки

Блокируемые дифференциалы лишены упомянутого выше главного недостатка по части проходимости и динамичного разгона при недостаточном сцеплении с дорогой.

Достигается это разными способами:

  • Дисковые блокировки и их менее эффективные разновидности LSD работают по принципу поджатия пакета фрикционных дисков по мере увеличения разности в скоростях между колёсами оси, в результате часть момента всё же поступает на ту сторону, где есть зацеп;
  • Червячные работают примерно так же, но несколько мягче, за счёт дополнительного проворота сателлитов червячного типа перед их упором торцами в корпус с последующей блокировкой относительного смещения полуосей, это самые распространённые типы самоблоков, различаются ориентацией сателлитов относительно оси;
  • Электронной блокировкой принято называть её имитацию, когда вывешенное колесо зажимается тормозными колодками и момент перебрасывается на загруженное, чем эта схема работает эффективней, тем больше потери, перегрузки и износ тормозов, тем не менее она часто спасает легковые машины и кроссоверы в трудной ситуации;
  • Вискомуфты могут выполнять роль как дифференциалов, так и их блокировок, в первом случае они включаются последовательно в линию передачи момента и могут её прерывать, а во втором – блокируют входной и выходной валы, препятствуя работе свободного дифференциала.

Самой эффективной блокировкой будет жёсткая механическая с электрическим или пневмоприводом. Именно так и сделано на лучших внедорожниках, там блокируются все три дифференциала, межосевой и два межколёсных.

Разновидности блокировок межосевого дифференциала

В современных внедорожниках реализовывается два типа блокировки межосевого дифференциала: ручная и автоматическая. Оба они предполагают или полное, или частичное выключение узла. Чаще на автомобилях повышенной проходимости устанавливаются автоматические блокировки межосевых дифференциалов. Существует три их основных разновидности:

  • Блокировка с вискомуфтой;
  • Блокировка типа Torsen;
  • Блокировка с фрикционной муфтой.

Каждый из этих видов блокировки имеет свои конструктивные особенности и преимущества.

Блокировка с вискомуфтой

Такая разновидность блокировки межосевого дифференциала является на сегодняшний день наиболее распространенной. Она построена по симметричной планетарной схеме, в основе которой лежит взаимодействие между собой конических шестерен. Одним из важнейших элементов ее конструкции является наполненная масляной воздушно-силиконовой смесью герметично закрытая полость. Она связана с полуосями посредством двух отдельных пакетов дисков.

Если полноприводный автомобиль едет с постоянной скоростью по ровной поверхности, то межосевой дифференциал, снабженный такой системой блокировки, транслирует крутящий момент на переднюю и заднюю ведущие оси в соотношении 50% на 50%. В том случае, если вращение одного из пакетов дисков ускоряется, то за счет повышения давления в герметичной полости вискомуфта начинает блокировать (то есть тормозить) соответствующий пакет. Благодаря этому угловые скорости выравниваются, и, по сути дела, происходит блокировка межосевого дифференциала.

Основными достоинствами такой системы являются простота ее конструкции и невысокая стоимость. Именно эти факторы обусловили широкое распространение вискомуфт в системах блокировок межосевых дифференциалов современных внедорожников. Что касается недостатков такой конструкции, то к ним следует отнести неполное автоматическое блокирование, а также риск перегрева в том случае, если она работает в течение длительного периода времени. Дело в том, что значительная часть передаваемой ей кинетической энергии вращения преобразовывается в энергию тепловую.

Устройство повышенного сопротивления

Помимо сателлитов, ведущих и ведомых шестерен, дифференциал повышенного трения включает такие элементы:

  • корпус, жестко прикрепленный к планетарной шестеренке;
  • пакет фрикционных дисков, установленных на каждой полуоси;
  • стальные диски, чьи выступы зафиксированы в корпусе;
  • распорная пружина, вставленная между коническими шестернями полуосей.

Стальные и фрикционные диски (похожие применяются в сцеплении) установлены поочередно, первые вращаются вместе с корпусом, вторые – с осями. Конусообразная шестеренка надета на шлицы оси и способна смещаться на определенное расстояние. Пружина поддавливает 2 противоположных осевых шестерни.

Частичная блокировка дифференциала происходит следующим образом:

  1. На прямолинейном сухом участке дороги сателлиты неподвижны, а диски вращаются друг относительно друга.
  2. При попадании одной шины на скользкий участок начинается пробуксовка. Благодаря конусной форме зубьев шестеренки со стороны остановившегося колеса начнут взаимно отталкиваться.
  3. Шестерня полуоси сдвинется и сожмет пакет дисков. Возникнет сила трения, заставляющая ось вращаться вместе с корпусом напрямую от «планетарки» в обход сателлитов.

Подобное устройство самостоятельно регулирует степень блокировки – чем медленнее крутится покрышка с хорошим сцеплением, тем сильнее сжимаются диски и подается больше крутящего момента.

Блокировка типа Torsen

Она состоит из таких основных элементов, как корпус, левая и правая полуосевые шестерни, их сателлиты и выходные валы. Специалисты в области автомобилестроения считают, что конструкция блокировки межосевого дифференциала этого типа является на сегодняшний день наиболее эффективной и совершенной.

Основу этого механизма блокировки составляют две пары червячных колес, в каждой из которых есть ведущее и ведомое (они называются полуосевыми и сателлитами). Функционирование этой системы основывается на некоторых особенностях, которые имеют шестерни такого типа. Если все колеса автомобиля имеют одинаковое сцепление с поверхностью, то дифференциал работает в штатном режиме. Как только одно из них начинает по тем или иным причинам вращаться быстрее остальных, то сателлит, связанный с ним, пытается начать вращение в обратную сторону. Вследствие этого происходит перегрузка червячной шестерни, а выходные валы блокируются. «Высвободившийся» крутящий момент переходит на другую ось, в результате чего его значения уравниваются.

Важнейшими преимуществами блокировки межосевого дифференциала типа Torsen являются очень высокая скорость срабатывания и широкий диапазон значений переброски вращающего момента с оси на ось. Кроме того, такая блокировка не перегружает тормозную систему автомобиля. Основным недостатком такой конструкции ее сложность.

Дифференциалы Квайф

Отличительной особенностью дифференциалов этого типа является то, что сателлиты в них располагаются параллельно оси вращения корпуса (чаши), причем в два ряда. Кроме того, при функционировании этих агрегатов образуются силы трения, которые при необходимости автоматически осуществляют блокировку, повышают проходимость и силу тяги автомобиля. Чаще всего дифференциалы Квайф используются для тюнинга легковых автомобилей и внедорожников.

Блокировка с фрикционной муфтой

Главной отличительной особенностью такой системы является то, что она предполагает возможность как автоматической, так и ручной блокировки межосевого дифференциала. Конструктивно она очень похожа на системы с вискомуфтой, только вместо последней в ней установлены фрикционные диски.

При плавном движении автомобиля угловые скорости между его ведущими осями распределяются равномерно. Если одна из полуосей ускоряется, то фрикционные диски сближаются, сила трения между ними увеличивается, в результате чего происходит притормаживание полуоси.

Системы блокировки межосевых дифференциалов, устроенные на основе фрикционных муфт, на серийных автомобилях практически не применяются. Она достаточно сложна по своей конструкции, к тому же имеет невысокий ресурс из-за того, что рабочие элементы (фрикционные диски) быстро изнашиваются. Кроме того, устройства блокировки с фрикционными муфтами требуют частого обслуживания.

Дифференциалы с ограниченным скольжением — LSD

Этот тип дифференциала по сути является удобным компромиссом между открытым дифференциалом и полной блокировкой дифференциала, поскольку он позволяет использовать его только при необходимости. Самым большим преимуществом ЛСД является то, что когда автомобиль движется по ровным дорогам или шоссе, он работает как «открытый» дифференциал, а при движении по пересеченной местности дифференциал из «открытого» становится блокирующим, что обеспечивает безаварийную езду. повороты и подъемы или спуски по неровным, заполненным выбоинами и грязными дорогами. Переключение с «открытого» на дифференциал повышенного трения чрезвычайно быстрое и простое и осуществляется с помощью кнопки на приборной панели автомобиля.

ЛСД имеет три основных типа:

  • дисковый механизм
  • червячный редуктор
  • вязкая связь

С блокировкой диска

Трение создается между дисками. Один фрикционный диск имеет жесткое соединение с чашкой дифференциала, а другой — с валом.

Червячная блокировка

Принцип его работы очень прост: увеличение крутящего момента одного колеса приводит к частичной блокировке и передаче крутящего момента на другое колесо. (Червячный замок также называется Torque Sensing).

Вязкая связь

Он состоит из набора близко расположенных перфорированных дисков, помещенных в герметичный корпус, заполненный силиконовой жидкостью, которые соединены между собой чашкой дифференциала и приводным валом. Когда угловые скорости равны, дифференциал работает в нормальном режиме, но когда скорость вращения вала увеличивается, расположенные на нем диски увеличивают свою скорость и затвердевают силикон, находящийся в корпусе. Поскольку существует риск перегрева, этот тип блокировки используется крайне редко.

Обслуживание

ТО исправного дифференциала сводится к замене масла в редукторе или раздатке. Никаких регулировочных или иных сервисных операций не предусмотрено, только ремонт при износе и поломках. На самоблоках иногда потребуется восстановить величину предварительного натяга подбором пакета пружинных шайб.

Обычно все дифференциалы повышенного трения требуют применения специального масла типа LSD (Limited Slip), но сейчас лучшие универсальные масла уже обладают подобными свойствами, о чём указано на этикетке.

Заключение

Сегодня дифференциал используется на всех без исключения автомобилях, что говорит о его незаменимости. Многие автовладельцы и не задумываются о том, что там у них под днищем автомобиля, а обо всех нюансах и тонкостях этого узла знают только поклонники автоспорта и сурового бездорожья. Но от того, насколько качественно выполняет свою работу этот узел, зависит уверенность в маневрах и безопасность на дороге.

Источники

  • https://AvtoTachki.com/chto-takoe-differenczial-avtomobilya/
  • https://FB.ru/article/204311/differentsialyi—eto-chto-takoe-kak-nayti-differentsial-funktsii
  • https://AutoVogdenie.ru/chto-takoe-differencial-v-avtomobile.html
  • https://DriverTip.ru/osnovy/chto-takoe-differentsial-kak-on-rabotaet.html
  • https://VazNeTaz.ru/blokirovka-differenciala
  • https://quto.ru/journal/autorambler/chto-takoe-differentsial-i-kak-on-rabotaet.htm
  • https://AvtoTachki.com/chto-takoe-blokirovka-differencziala/
  • https://AvtoNov.com/%D0%B1%D0%BB%D0%BE%D0%BA%D0%B8%D1%80%D0%BE%D0%B2%D0%BA%D0%B0-%D0%BC%D0%B5%D0%B6%D0%BE%D1%81%D0%B5%D0%B2%D0%BE%D0%B3%D0%BE-%D0%B4%D0%B8%D1%84%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D0%B0/
  • https://autochainik.ru/princip-raboty-differenciala.html
  • https://AvtoNov.com/%D1%87%D1%82%D0%BE-%D1%82%D0%B0%D0%BA%D0%BE%D0%B5-%D0%B4%D0%B8%D1%84%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB-%D0%B2-%D0%B0%D0%B2%D1%82%D0%BE%D0%BC%D0%BE%D0%B1%D0%B8%D0%BB%D0%B5/
  • https://VazNeTaz.ru/differencial

[свернуть]

Комментарии закрыты.